首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers’ conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets – designed and used in an exploratory manner – promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.  相似文献   

2.
3.
The purpose of this study was to further the understanding of how preservice teachers construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science in a school‐based setting and the extent of knowledge construction. Evidence of knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. The methods course was content‐specific with instruction in elementary mathematics and science. Learning experiences were based on national standards with a constructivist instructional approach and immediate access to field experiences. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge. Learning venues were discovered to be the conduits of learning in a situated learning context. As in this study, content‐specific, school‐based experiences may afford preservice teachers greater opportunities to focus on content and instructional strategies at deeper levels; to address anxieties typically associated with the teaching of elementary mathematics and science; and to become more confident and competent teachers. Gains in positive attitudes and confidence in teaching mathematics and science were identified as direct results of this experience.  相似文献   

4.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

5.
A model of a 1-year, graduate level content-specific teacher preparation program is described that integrates learning about and teaching with electronic technologies as an integral component in teaching and learning science and mathematics, grades 3–12. The development of an integrated knowledge structure of science/math, technology, and teaching science/math with technology requires experiences focused on an integration of three important components: planning during the preactive stage, monitoring and regulating during the interactive stage, and assessing and revising in the postactive stage of teaching. The program model features an integration of experiences in incorporating technology in teaching science and math that specifically relate or interconnect their thinking in these three stages of instruction.  相似文献   

6.
The purpose of this study is to provide an in‐depth analysis of attitudes and perceptions related to the integration of mathematics, science, and technology education of preservice teachers preparing to teach STEM disciplines. Longitudinal data by individual cohort and across 7 years of the Integrated Mathematics, Science, and Technology (MSAT) Program are reported, analyzed, and interpreted to help design and improve preservice teacher education programs and improve teaching and learning in STEM classrooms. Results of quantitative analyses indicate that there was generally no change in preservice teacher attitudes and perceptions related to the value of the integration of mathematics, science, and technology education—they clearly valued integration at the onset and at the completion of the program. However, there was a significant change in preservice teacher attitudes and perceptions related to integration feasibility in terms of inefficiency and difficulty. Implications for teacher education programs include: (a) more exposure to concepts, processes, and skills in STEM that are similar, analogous, complementary, or synergistic; (b) familiarity with instructional strategies and access to resources; (c) deeper understanding of content across STEM; and (d) strategies for collaboration and team work to make integrated instruction time more efficient and less difficult to manage.  相似文献   

7.
Ann R. Edwards 《ZDM》2011,43(1):7-16
Mathematics education research has not sufficiently theorized about mathematics teacher knowledge and practice, teacher learning, and teacher education in ways that are reflective of the specificities of the sociopolitical contexts of schooling. In the USA, this is particularly important for urban mathematics education. This paper examines the affordances and challenges of representing context in video records of practice, particularly in the urban context, for use in the preparation of mathematics teachers for urban settings. The discussion, grounded in current research and theory relevant to representations of teaching, urban education, and mathematics teacher education, takes up three key issues: how is a focus on the urban context relevant to the design of video records of practice for mathematics teacher education? How can video records support prospective teachers’ understandings of the sociopolitical contexts of mathematics teaching? How does a focus on the urban context impact the meaning teachers make of video records?  相似文献   

8.
9.
This paper reports the similarities and differences in how “expert mathematics teacher” is conceptualized by mathematics educators in Hong Kong and Chongqing, two cities in China which share similar but different cultural and social backgrounds. Thirty-seven mathematics education researchers, school principals with mathematics education background, and mathematics teachers were interviewed on their perceptions of expert mathematics teacher. It is found that in both cities an expert mathematics teacher should have a profound knowledge base in mathematics, teaching, and students; strong ability in teaching; and a noble personality and a spirit of life-long learning. As for differences, an expert mathematics teacher should have the ability to conduct research, mentor other teachers, and have profound knowledge of examination and educational theories in Chongqing. These attributes were not found in Hong Kong. These similarities and differences are discussed, and relevant social and cultural factors in the two contexts are examined.  相似文献   

10.
Oh Nam Kwon  Mi-Kyung Ju 《ZDM》2012,44(2):211-222
International comparative studies such as the Trend in International Mathematics and Science Study (TIMSS) and the OECD Programme for International Student Assessment (PISA) indicate that Korean students have consistently performed well. In addition, a recent study titled Mathematics Teaching in the 21st Century (MT21) compared prospective teachers’ knowledge and beliefs about teaching and learning in six participant countries, reporting that Korean prospective secondary mathematics teachers were better prepared than those in other countries. In this context, this study has examined the curricula for mathematics teacher education and teacher employment tests in order to investigate the social expectation for teacher professionalization in Korea, particularly focusing on teacher knowledge. The analysis shows that while elementary mathematics teacher education emphasizes pedagogical knowledge, the secondary mathematics education curricula are highly content knowledge oriented. However, the secondary mathematics teacher education includes various aspects of pedagogical content knowledge in its curricula and teacher employment test. This research also identifies the discourse concerning mathematics instruction for diversity and equity and the emphasis of reflective practice as the significant development of the current Korean teacher education.  相似文献   

11.
Many members of the mathematics and science education community believe that the integration of mathematics and science enhances students' understanding of both subjects. Despite this belief, attempts to integrate these subjects have frequently been unsuccessful. This study examines the development and implementation of a team‐taught integrated middle level mathematics and science methods course. The data presented in this study were collected from three groups of preservice teachers who were enrolled in a grades 5–8 middle level teacher certification program in Connecticut from 1998–2000. The data analysis indicates that preservice teachers appreciated the emphasis on integration used in the course, but at the same time when concepts did not integrate easily they were frustrated. Despite this frustration, the preservice teachers' understanding of integration was enhanced as a result of the course.  相似文献   

12.
The squeeze on instructional time and other factors increasingly leads educators to consider mathematics and science integration in an effort to be more efficient and effective. Unfortunately, the need for common understandings for what it means to integrate these disciplines, as well as the need for improving disciplinary knowledge, appears to continue to be significant obstacles to an integrated approach to instruction. In this study we report the results of a survey containing six instructional scenarios administered to thirty-three middle grades science and math teachers. Analysis of teacher responses revealed that while teachers applied similar criteria in their reasoning, they did not possess common characterizations for integration. Furthermore, analysis suggested that content knowledge serves as a barrier to recognizing integrated examples. Implications for professional development planners include the need to develop and provide teachers with constructs and parameters for what constitutes mathematics and science integration. Continued emphasis on improving teacher content knowledge in both mathematics and science is also a prerequisite to enabling teachers to integrate content.  相似文献   

13.
If integration of mathematics and science is to occur, teacher preparation programs at colleges and universities must provide leadership in developing and modeling methods of teaching integrated content. This paper describes the development and implementation of an integrated mathematics/science preservice elementary methods course at the University of Connecticut. In planning the course several questions were addressed: (a) What does integration of mathematics and science mean? (b) What content should be taught in an integrated mathematics/science (IM/S) elementary methods course? and (c) How should an IM/S elementary methods course be taught? An important element of the course involved enlisting an exemplary elementary teacher who was released from her classroom one day per week to co-teach the methods class. Establishing a definition of integration proved to be one of the most challenging aspects of course development. The authors determined that most difficulties in integration of disciplines result from attempts to “force” the integration. As the team struggled with the philosophical, theoretical and logistical problems in the development of the course, it became apparent why integration has not been more widely implemented. It is believed this model can be adapted to allow for integration of all content areas. Plans are currently underway to incorporate social studies into the methods class for Fall of 1993.  相似文献   

14.
This study examined teachers’ and parents’ beliefs on the implementation of inquiry-based modeling activities as a means to facilitate parental engagement in school mathematics and science. The study had three objectives: (a) to describe teachers’ beliefs about inquiry-based mathematics and science and parental engagement; (b) to describe parents’ beliefs about inquiry-based mathematics and science and their engagement in inquiry-based problem solving; and (c) to explore the impact of an inquiry-based learning environment comprising a model-eliciting activity and Twitter. The research involved three sixth-grade teachers and 32 parents from one elementary school. Teachers and parents participated in workshops, followed by the implementation of a model-eliciting activity in two classrooms. Three teachers and six parents participated in semi-structured interviews. Teachers reported positive beliefs on parental engagement in the mathematics and science classrooms and the potential positive role of parents in implementing innovative problem-solving activities. Parents expressed strong beliefs on their engagement and welcomed the inquiry-based modeling approach. Based on the results of this aspect of a four-year longitudinal design, implications for parental engagement in inquiry-based mathematics and science teaching and learning and further research are discussed.  相似文献   

15.
A number of national science and mathematics education professional associations, and recently technology education associations, are united in their support for the integration of science and mathematics teaching and learning. The purpose of this historical analysis is two‐fold: (a) to survey the nature and number of documents related to integrated science and mathematics education published from 1901 through 2001 and (b) to compare the nature and number of integrated science and mathematics documents published from 1990 through 2001 to the previous 89 years (1901–1989). Based upon this historical analysis, three conclusions have emerged. First, national and state standards in science and mathematics education have resulted in greater attention to integrated science and mathematics education, particularly in the area of teacher education, as evidenced by the proliferation of documents on this topic published from 1901–2001. Second, the historical comparison between the time periods of 1901–1989 versus 1990–2001 reveals a grade‐level shift in integrated instructional documents. Middle school science continues to be highlighted in integrated instructional documents, but surprisingly, a greater emphasis upon secondary mathematics and science education is apparent in the integration literature published from 1990–2001. Third, although several theoretical integration models have been posited in the literature published from 1990–2001, more empirical research grounded in these theoretical models is clearly needed in the 21st century.  相似文献   

16.
This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities, separately targeting elementary and secondary pre-service teachers. Classroom observation established that the courses were taught with student-centred methods that were comparable to those used in IBL courses for students in mathematics-intensive fields at the same institutions. To measure pre-service teachers' gains in mathematical knowledge for teaching, we administered the Learning Mathematics for Teaching (LMT) instrument developed by Hill, Ball and Schilling for in-service teacher professional development. Results from the LMT show that pre-service teachers made significant score gains from beginning to end of their course, while data from interviews and from surveys of learning gains show that pre-service teachers viewed their gains as relevant to their future teaching work. Measured changes on pre-/post-surveys of attitudes and beliefs were generally supportive of learning mathematics but modest in magnitude. The study is distinctive in applying the LMT to document pre-service teachers' growth in mathematical knowledge for teaching. The study also suggests IBL is an approach well suited to mathematics departments seeking to strengthen their pre-service teacher preparation offerings in ways consistent with research-based recommendations.  相似文献   

17.
18.
Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K–12 science education standards. However, there is relatively little is known about effective ways of teaching science through engineering design. The study explores the approaches or strategies used by a sixth grade science teacher to teach science and engineering in an integrative manner. Classroom observations, teacher interview, and student surveys were used to study the features of engineering integration implemented by the teacher and the changes in student interest in science and engineering by participating in an engineering design‐based science unit. Findings suggest that the teacher explicitly included practices and core ideas from engineering and science; used an engaging, motivating engineering challenge; and provided students with opportunities to be autonomous. Students engaged in the activities in the engineering unit and their interest level slightly increased. The results suggest that the three strategies that the teacher used to teach engineering and science are important foundations of integrated science and engineering education.  相似文献   

19.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

20.
Objective: In this study, we investigated the implementation of project‐based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the 2013–2014 school year in STEM Traditional Courses, a STEM Platform School, an Engineering Optional Program (EOP), and a Virtual STEM Academy (VSA) to measure teacher instructional practices (School Observation Measure) and student engagement (The Rubric for Student‐Centered Activities). Results: The four approaches to STEM education showed significant differences in their implementation of PBL, with the EOP and VSA having higher incidences of PBL activities. Additionally, higher‐level questioning strategies, higher‐order instructional feedback, and integration of STEM subject areas was absent or rarely observed. Conclusions: Components of PBL are missing in STEM education, in traditional and non‐traditional STEM courses. In‐service teachers may benefit from professional development that enhances their understanding of PBL activities to maximize student learning opportunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号