首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3. Single gas adsorption isotherms of N2, CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.  相似文献   

2.
The adsorption properties of CO2, N2 and CH4 in all-silica zeolites were studied using molecular simulations. Adsorption isotherms for single components in MFI were both measured and computed showing good agreement. In addition simulations in other all silica structures were performed for a wide range of pressures and temperatures and for single components as well as binary and ternary mixtures with varying bulk compositions. The adsorption selectivity was analyzed for mixtures with bulk composition of 50:50 CO2/CH4, 50:50 CO2/N2, 10:90 CO2/N2 and 5:90:5 CO2/N2/CH4 in MFI, MOR, ISV, ITE, CHA and DDR showing high selectivity of adsorption of CO2 over N2 and CH4 that varies with the type of crystal and with the mixture bulk composition.  相似文献   

3.
The quantum mechanics (QM) method and grand canonical Monte Carlo (GCMC) simulations are used to study the effect of lithium cation doping on the adsorption and separation of CO2, CH4, and H2 on a twofold interwoven metal–organic framework (MOF), Zn2(NDC)2(diPyNI) (NDC=2,6‐naphthalenedicarboxylate; diPyNI=N,N′‐di‐(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide). Second‐order Moller–Plesset (MP2) calculations on the (Li+–diPyNI) cluster model show that the energetically most favorable lithium binding site is above the pyridine ring side at a distance of 1.817 Å from the oxygen atom. The results reveal that the adsorption capacity of Zn2(NDC)2(diPyNI) for carbon dioxide is higher than those of hydrogen and methane at room temperature. Furthermore, GCMC simulations on the structures obtained from QM calculations predict that the Li+‐doped MOF has higher adsorption capacities than the nondoped MOF, especially at low pressures. In addition, the probability density distribution plots reveal that CO2, CH4, and H2 molecules accumulate close to the Li cation site. The selectivity results indicate that CO2/H2 selectivity values in Zn2(NDC)2(diPyNI) are higher than those of CO2/CH4. The selectivity of CO2 over CH4 on Li+‐doped Zn2(NDC)2(diPyNI) is improved relative to the nondoped MOF.  相似文献   

4.
Five different imidazolium‐based ionic liquids (ILs) were incorporated into a metal–organic framework (MOF), MIL‐53(Al), to investigate the effect of IL incorporation on the CO2 separation performance of MIL‐53(Al). CO2, CH4, and N2 adsorption isotherms of the IL/MIL‐53(Al) composites and pristine MIL‐53(Al) were measured to evaluate the effect of the ILs on the CO2/CH4 and CO2/N2 selectivities of the MOF. Of the composite materials that were tested, [BMIM][PF6]/MIL‐53(Al) exhibited the largest increase in CO2/CH4 selectivity, 2.8‐times higher than that of pristine MIL‐53(Al), whilst [BMIM][MeSO4]/MIL‐53(Al) exhibited the largest increase in CO2/N2 selectivity, 3.3‐times higher than that of pristine MIL‐53(Al). A comparison of the CO2 separation potentials of the IL/MOF composites showed that the [BMIM][BF4]‐ and [BMIM][PF6]‐incorporated MIL‐53(Al) composites both showed enhanced CO2/N2 and CO2/CH4 selectivities at pressures of 1–5 bar compared to composites of CuBTC and ZIF‐8 with the same ILs. These results demonstrate that MIL‐53(Al) is a versatile platform for IL/MOF composites and could help to guide the rational design of new composites for target gas‐separation applications.  相似文献   

5.
A new type of composite adsorbents was synthesized by incorporating monoethanol amine (MEA) into β-zeolite. The parent and MEA-functionalized β-zeolites were characterized by X-ray diffraction (XRD), N2 adsorption, and thermogravimetric analysis (TGA). The adsorption behavior of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on these adsorbents was investigated at 303 K. The results show that the structure of zeolite was well preserved after MEA modification. In comparison with CH4 and N2, CO2 was preferentially adsorbed on the adsorbents investigated. The introduction of MEA significantly improved the selectivity of both CO2/CH4 and CO2/N2, the optimal selectivity of CO2/CH4 can reach 7.70 on 40 wt% of MEA-functionalized β-zeolite (MEA(40)-β) at 1 atm. It is worth noticing that a very high selectivity of CO2/N2 of 25.67 was obtained on MEA(40)-β. Steric effect and chemical adsorbate-adsorbent interaction were responsible for such high adsorption selectivity of CO2. The present MEA-functionalized β-zeolite adsorbents may be a good candidate for applications in flue gas separation, as well as natural gas and landfill gas purifications.  相似文献   

6.
A combination of azo and acylamide ligands is used in the preparation of metal–organic frameworks. Light response research reveals that under UV–vis irradiation, the CO2 adsorption of 1 declines as much as 21.4%. 1 exhibits excellent CO2 adsorption selectivity over CH4, O2, CO, and N2 gasses with IAST selectivity of 21–580 at 293 K. This MOF also has promising potential in separation of xylene isomers in the liquid phase with the adsorption of p-xylene of 265.15, o-xylene of 101.25 and m-xylene of 0 mg g?1, respectively.  相似文献   

7.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   

8.
A metal–organic framework (NPC‐6) with an NbO topology based on a piperazine ring‐bridged diisophthalate ligand was synthesized and characterized. The incorporated piperazine group leads to an enhanced adsorption affinity for CO2 in NPC‐6, in which the CO2 uptake is 4.83 mmol g?1 at 293 K and 1 bar, ranking among the top values of CO2 uptake on MOF materials. At 0.15 bar and 293 K, the NPC‐6 adsorbs 1.07 mmol g?1 of CO2, which is about 55.1 % higher than that of the analogue MOF NOTT‐101 under the same conditions. The enhanced CO2 uptake combined with comparable uptakes for CH4 and N2 leads to much higher selectivities for CO2/CH4 and CO2/N2 gas mixtures on NPC‐6 than on NOTT‐101. Furthermore, an N‐alkylation is used in the synthesis of the PDIA ligand, leading to a much lower cost compared with that in the synthesis of ligands in the NOTT series, as the former does not require a palladium‐based catalyst and borate esters. Thus, we conclude that NPC‐6 is a promising candidate for CO2 capture applications.  相似文献   

9.
The permeation of CO2 and CH4 and their binary mixtures through a DDR membrane has been investigated over a wide range of temperatures and pressures. The synthesized DDR membrane exhibits a high permeance and maintains a very high selectivity for CO2. At a total pressure of 101 kPa, the highest selectivity for CO2 in a 50∶50 feed mixture was found to be over 4000 at 225 K. This is ascribed to the higher adsorption affinity, as well as to the higher mobility for the smaller CO2 molecules in the zeolite, preventing the bypassing of the CH4 through the membrane. An engineering model, based on the generalized Maxwell-Stefan equations, has been used to interpret the transport phenomena in the membrane. The feasibility of DDR membranes as applied to CO2 removal from natural gas or biogas is anticipated.  相似文献   

10.
Two novel imide/imine-based organic cages have been prepared and studied as materials for the selective separation of CO2 from N2 and CH4 under vacuum swing adsorption conditions. Gas adsorption on the new compounds showed selectivity for CO2 over N2 and CH4. The cages were also tested as fillers in mixed-matrix membranes for gas separation. Dense and robust membranes were obtained by loading the cages in either Matrimid® or PEEK-WC polymers. Improved gas-transport properties and selectivity for CO2 were achieved compared to the neat polymer membranes.  相似文献   

11.
CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547–1556, 1998  相似文献   

12.
Adsorption of CO2, N2, CH4 and H2 on triamine-grafted pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41) was investigated at room temperature in a wide range of pressure (up to 25 bar) using gravimetric measurements. The material was found to exhibit high affinity toward CO2 in comparison to the other species over the whole range of pressure. Column-breakthrough dynamic measurements of CO2-containing mixtures showed very high selectivity toward CO2 over N2, CH4 and H2 at CO2 concentrations within the range of 5 to 50%. These conditions are suitable for effective removal of CO2 at room temperature from syngas, flue gas and biogas using temperature swing (TS) or temperature-pressure swing (TPS) regeneration mode. Moreover, TRI-PE-MCM-41 was found to be highly stable over hundreds of adsorption-desorption cycles using TPS as regeneration mode.  相似文献   

13.
Designing high-performance materials for CO2 capture and conversion is of great significance to reduce the greenhouse effect and alleviate the energy crisis. The strategy of doping is widely used to improve activity and selectivity of the materials. However, it is unclear how the doping densities influence the materials’ properties. Herein, we investigated the mechanism of CO2 capture, separation and conversion on MoS2, MoSe2 and Janus MoSSe monolayers with different boron doping levels using density functional theory (DFT) simulations. The results indicate that CO2, H2 and CH4 bind weakly to the monolayers without and with single-atom boron doping, rendering these materials unsuitable for CO2 capture from gas mixtures. In contrast, CO2 binds strongly to monolayers doped with diatomic boron, whereas H2 and CH4 can only form weak interactions with these surfaces. Thus, the monolayers doped with diatomic boron can efficiently capture and separate CO2 from such gas mixtures. The electronic structure analysis demonstrates that monolayers doped with diatomic doped are more prone to donating electrons to CO2 than those with single-atom boron doped, leading to activation of CO2. The results further indicate that CO2 can be converted to CH4 on diatomic boron doped catalysts, and MoSSe is the most efficient of the surfaces studied for CO2 capture, separation and conversion. In summary, the study provides evidence for the doping density is vital to design materials with particular functions.  相似文献   

14.
Metal–organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF‐62 MOF glass membrane and exploited its intrinsic gas‐separation properties. The MOF glass membrane was fabricated by melt‐quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF‐62 MOF membrane on a porous ceramic alumina support. The molten ZIF‐62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2/CH4, CO2/N2 and CO2/CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.  相似文献   

15.
Fine‐tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF‐8 to be between CO2 and N2 by confining an imidazolium‐based ionic liquid [bmim][Tf2N] into ZIF‐8’s SOD cages by in‐situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid‐modified ZIF‐8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2/N2 and CO2/CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2/CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading.  相似文献   

16.
Investigating the adsorption characteristics of CO2, N2 and CH4 on kaolinite clay is beneficial for enhanced shale gas recovery by gas injection. In this paper, the experiments of CO2, N2 and CH4 adsorption at 288 K, 308 K and 328 K on kaolinite clay were conducted, and the thermodynamics analysis of adsorption of three gases was performed. The findings reveal that the order of the uptakes of three gases on kaolinite clay is as follows: N2 < CH4 < CO2. Reducing temperature enlarges the separation coefficients of CO2 over CH4 (αCO2/CH4), CO2 over N2 (αCO2/N2), and CH4 over N2 (αCH4/N2). The value of αCO2/CH4 greater than one validates that CO2 is capable to directly replace the pre-adsorbed CH4. The spontaneity of CO2 adsorption is the highest, while N2 has the lowest adsorption spontaneity. Injecting N2 into gas-bearing reservoir can cause CH4 desorption by lowering the spontaneity of CH4 adsorption. Adsorbed CO2 molecules form a most ordered rearrangement on kaolinite surface. The decrease rate of entropy loss for N2 adsorption is higher than those for CO2 and CH4 adsorption.  相似文献   

17.
Metal–organic frameworks (MOF) materials are promising materials for gas separation, but their application still faces various challenges. A strategy is now reported for introducing subunits of MOFs into traditional zeolite frameworks to obtain applicable adsorbents with advantages of both zeolites and MOFs. The subunits of ZIFs were introduced into zeolite Y and zeolite ZSM‐5 for CH4/N2 separation. Both the molecular simulation and experimental results validated that the IAST CH4/N2 selectivity of the resulting samples greatly improved (above 8, at 100 kPa and 25 °C) with the incorporation of ZIF subunits into zeolites structure, and the selectivities were obviously higher than that of zeolites and even better than that of ZIFs. This strategy not only gave rise to an efficient adsorbent for CH4/N2 separation but also provided ideas for design of other adsorption and separation materials.  相似文献   

18.
A crystalline and permanently porous copper phosphonate monoester framework has been synthesized from a tetraaryl trigonal phosphonate monoester linker. This material has a surface area over 1000 m2 g?1, as measured by N2 sorption, the highest reported for a phosphonate‐based metal–organic framework (MOF). The monoesters result in hydrophobic pore surfaces that give a low heat of adsorption for CO2 and low calculated selectivity for CO2 over N2 and CH4 in binary mixtures. By careful manipulation of synthetic conditions, it is possible to selectively remove some of the monoesters lining the pore to form a hydrogen phosphonate while giving an isomorphous structure. This increases the affinity of the framework for CO2 giving higher ambient uptake, higher heat of adsorption, and much higher calculated selectivity for CO2 over both N2 and CH4. Formation of the acid groups is noteworthy as complexation with the parent acid gives a different structure.  相似文献   

19.
Although zeolites such as NaY and 13X adsorb CO2 much more than CO, the adsorption amount of CO2 and CO can be reversed if the zeolites are modified with CuCl. When zeolite NaY or 13X is mixed with CuCl and heated, high CO adsorption selectivity and capacity can be obtained. Isotherms show the adsorbents have CO capacity much higher than CO2. This is because CuCl has dispersed onto the surface of the zeolites to form a monolayer after the heat treatment and the monolayer dispersed CuCl can provide tremendous Cu(I) to selective adsorb CO and inhibit the CO2 adsorption. The monolayer dispersion of CuCl is confirmed by XRD and EXAFS studies. The loading of CuCl on the zeolites has a threshold below which the CuCl forms monolayer after heating and crystalline phase of CuCl can not be detected by XRD. An adsorbent of CuCl/NaY with CuCl content closed to the monolayer capacity shows very high CO selective adsorbability for CO2, N2, H2 and CH4. At temperature higher than room temperature, the adsorbent has even better CO selectivity for CO2. Using the adsorbent, a single-stage 4 beds PSA process, working at 70°C and 0.4 MPa to 0.013 MPa, can obtain CO product with purity >99.5% and yield >85%.  相似文献   

20.
Applying molecular dynamics simulation and computer graphics methods we have investigated the dynamic behavior of the separation process of CO2 from the CO2/N2 gas mixture in inorganic membranes at high temperatures. We have demonstrated that the permeation dynamics follows the Knudsen diffusion mechanism in our model system that has a slit-like pore of 6.3 Å. We have analyzed the effect of affinities of gas molecules for the membrane wall on the permeation to predict the optimal affinity strength for high selectivity of CO2. Our results indicate that in the model with the 600 K and 200 K affinities for CO2 and N2, respectively, we can obtain a high selectivity of CO2 even if the temperature is 1073 K. It is also shown that there is an optimal range for the CO2 affinity for the membrane wall to achieve good separation, which was estimated as the range of 400–600 K in our system, if the affinity of N2 is always weaker than that of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号