首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Adsorption-based removal of carbon dioxide (CO2) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co-adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2-selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal–organic framework (MOF) with unprecedented [Mn86] nanocages. Attributed to the existence of unique enzyme-like confined pockets, strong coordination interactions and dipole-dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record-high selectivities of CO2/CH4 and CO2/N2 mixtures. Highly efficient CO2/C2H2, CO2/CH4, and CO2/N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation.  相似文献   

2.
Adsorption equilibria of the gases CH4, N2, and CO2 and their binary and ternary mixtures on activated carbon Norit R1 Extra have been measured in the pressure range 0 P 6 MPa at T = 298 K. Pure gas adsorption equilibria were measured gravimetrically. Coadsorption data of the three binary mixtures CH4/N2, CH4/CO2, and CO2/N2 were obtained by the volume-gravimetric method. Isotherms of five ternary mixtures CH4/CO2/N2 were measured using the volumetric-chromatographic method. First, we present in a short overview the method and procedure of measurement. In a second part, the measured data of pressures, surface excess amounts adsorbed and absolute amounts adsorbed are presented and analyzed. In the last part of the paper the resulting pure gas adsorption data are correlated using a generalized dual-site Langmuir isotherm. Mixture adsorption can be predicted by this model using only pure component parameters with fair accuracy. Results are presented and discussed in several tables and figures.  相似文献   

3.
Tetra-n-butyl ammonium bromide (TBAB) semi-clathrate (sc) hydrates of gas are of prime importance in the secondary refrigeration domain and in the separation of gas molecules by molecular size. However, there is a scarcity of dissociation enthalpies under pressure of pure gases and gases mixtures for such systems. In addition, the phase equilibrium of TBAB sc hydrates of several pure gases is not well defined yet as a function of the TBAB concentration and as a function of the pressure. In this paper, dissociation enthalpies and the phase equilibrium of TBAB sc hydrates of gas have been investigated by differential scanning calorimetry (DSC) under pressure. Pure gases such as N2 and CO2 and gases mixtures such as N2 +  CO2 and CH4 +  CO2 were studied. To our knowledge, we present the first phase diagram of TBAB sc hydrates of N2 for different pressures of gas in the TBAB concentration range from 0.170 to 0.350 wt. Enthalpies of dissociation of TBAB sc hydrates of pure gases and gases mixtures were determined as a function of the presssure for a compound with a congruent melting point whose hydration number corresponds to 26.  相似文献   

4.
In this paper we used MOF-5 and Cu3(BTC)2 to separate CO2/CH4 and CH4/N2 mixtures under dynamic conditions. Both materials were synthesized and pelletized, thus allowing for a meaningful characterization in view of process scale-up. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). By performing breakthrough experiments, we found that Cu3(BTC)2 separated CO2/CH4 slightly better than MOF-5. Because the crystal structure of Cu3(BTC)2 includes unsaturated accessible metal sites formed via dehydration, it predominantly interacted with CO2 molecules and more easily captured them. Conversely, MOF-5 with a suitable pore size separated CH4/N2 more efficiently in our breakthrough test.  相似文献   

5.
A metal–organic framework (NPC‐6) with an NbO topology based on a piperazine ring‐bridged diisophthalate ligand was synthesized and characterized. The incorporated piperazine group leads to an enhanced adsorption affinity for CO2 in NPC‐6, in which the CO2 uptake is 4.83 mmol g?1 at 293 K and 1 bar, ranking among the top values of CO2 uptake on MOF materials. At 0.15 bar and 293 K, the NPC‐6 adsorbs 1.07 mmol g?1 of CO2, which is about 55.1 % higher than that of the analogue MOF NOTT‐101 under the same conditions. The enhanced CO2 uptake combined with comparable uptakes for CH4 and N2 leads to much higher selectivities for CO2/CH4 and CO2/N2 gas mixtures on NPC‐6 than on NOTT‐101. Furthermore, an N‐alkylation is used in the synthesis of the PDIA ligand, leading to a much lower cost compared with that in the synthesis of ligands in the NOTT series, as the former does not require a palladium‐based catalyst and borate esters. Thus, we conclude that NPC‐6 is a promising candidate for CO2 capture applications.  相似文献   

6.
Organic-inorganic hybrid materials were prepared by reacting 3-isocyanatopropyltriethoxysilane (IPTS) with hydroxyl terminated poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PEPG), followed by hydrolysis and condensation with acid catalysis. Composite membranes have been obtained by casting hybrid sol on the microporous polysulfone substrate. The membranes were characterized by Fourier transform infrared (FT-IR), 13C NMR and 29Si NMR. The permeability coefficients of N2, O2, CH4 and CO2 were measured by variable volume method. The gas permeability coefficients increase with increasing molecular weight of the polyethers. For the membranes containing PEG and PEPG, the higher values of CO2 permeability coefficients and CO2/N2 separation factors are due to the presence of ethylene oxide segments. In case of PEPG membranes, molecular weight has more influence on CO2 permeability than the effect of facilitation by ethylene oxide. The addition of TEOS into hybrid sol results in the decrease of all the gas permeability and does not affect the gas selectivity. PEG2000 membrane display the most performance among the hybrid membranes investigated here. The best values observed are CO2 permeability of 94.2 Barrer with selectivity of 38.3 for CO2/N2 and 15.6 for CO2/CH4.  相似文献   

7.
A continuous membrane column was employed to separate methane from gas mixtures of CO2CH4, CH4N2 and CO2CH4 N2 at room temperature. Shell-side composition profiles along the column were taken experimentally and compared with the calculated results. The agreements were excellent, indicating that the model calculation is adequate for a ternary system. Combination of two columns was developed to separate the ternary mixture.  相似文献   

8.
Two novel imide/imine-based organic cages have been prepared and studied as materials for the selective separation of CO2 from N2 and CH4 under vacuum swing adsorption conditions. Gas adsorption on the new compounds showed selectivity for CO2 over N2 and CH4. The cages were also tested as fillers in mixed-matrix membranes for gas separation. Dense and robust membranes were obtained by loading the cages in either Matrimid® or PEEK-WC polymers. Improved gas-transport properties and selectivity for CO2 were achieved compared to the neat polymer membranes.  相似文献   

9.
Sorption and dilation properties of polymer-gas systems involving poly(ethylene-co-vinyl acetate) and N2, CH4, or CO2, have been investigated at pressures up to 50 atm at temperatures of 10–40°C. Sorption isotherms for low-solubility gases (i.e., CH4 and N2) can be described by Henry's law, and those for high-solubility gas (i.e., CO2) by Flory-Huggins dissolution equation. Dilation isotherms are similar in contour to the corresponding sorption isotherms. From the obtained sorption and dilation data, partial molar volumes of the gases in the polymer were determined as a function of temperature. Thermal expansivity of dissolved CO2 molecules was estimated at ca. 2.4 × 10?3°C?1 from the temperature dependence of partial molar volume. The expansivity is smaller than that of liquid CO2 and larger than those of the polymer and organic liquids. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The spectra of flowing microwave post-discharge excited in N2 and N2 + CH4(N2 + C2H2) gas mixtures have been studied at low temperature (77 K). The molecular spectra of CN emitted by the collision-induced N + C and N + CH chemiluminescent reactions in the low-temperature afterglow system have been thoroughly investigated. The intensity of different CN (B2+-X2+) vibrational bands is very sensitive to low hydrocarbon concentration in nitrogen used as the working gas. Detection of hydrocarbon species has been demonstrated from concentrations of CH4 and C2H2 in N2 greater than 1010 molecules · cm–3.  相似文献   

11.
The adsorption properties of CO2, N2 and CH4 in all-silica zeolites were studied using molecular simulations. Adsorption isotherms for single components in MFI were both measured and computed showing good agreement. In addition simulations in other all silica structures were performed for a wide range of pressures and temperatures and for single components as well as binary and ternary mixtures with varying bulk compositions. The adsorption selectivity was analyzed for mixtures with bulk composition of 50:50 CO2/CH4, 50:50 CO2/N2, 10:90 CO2/N2 and 5:90:5 CO2/N2/CH4 in MFI, MOR, ISV, ITE, CHA and DDR showing high selectivity of adsorption of CO2 over N2 and CH4 that varies with the type of crystal and with the mixture bulk composition.  相似文献   

12.
The objective of this study was to synthesize rubbery polymers with a high H2S/CH4 selectivity for possible use as membrane materials for the separation of H2S from ‘low-quality’ natural gas. Two poly(ether urethanes), designated hereafter PU1 and PU3, and two poly(ether urethane ureas), designated PU2 and PU4, were synthesized and cast in the form of ‘dense’ (homogeneous) membranes. PU1 and PU2 contained poly(propylene oxide) whereas PU3 and PU4 contained poly(ethylene oxide) as the polyether component. The permeability of these membranes to two ternary mixtures of CH4, CO2, and H2S was measured at 35°C, and for a PU4 membrane also at 20°C, in the pressure range from 4 to 13.6 atm (4.05–13.78×105 Pa). PU4 is a very promising membrane material for H2S separation from mixtures with CH4 and CO2, having a H2S/CH4 selectivity greater than 100 at 20°C as well as a very high permeability to H2S. Permeability measurements were also made with commercial PEBAXTM membranes for comparison. The possibility of upgrading low-quality natural gas to US pipeline specifications for H2S and CO2 by means of membrane processes utilizing both highly H2S-selective and CO2-selective polymer membranes is discussed.  相似文献   

13.
A crystalline and permanently porous copper phosphonate monoester framework has been synthesized from a tetraaryl trigonal phosphonate monoester linker. This material has a surface area over 1000 m2 g?1, as measured by N2 sorption, the highest reported for a phosphonate‐based metal–organic framework (MOF). The monoesters result in hydrophobic pore surfaces that give a low heat of adsorption for CO2 and low calculated selectivity for CO2 over N2 and CH4 in binary mixtures. By careful manipulation of synthetic conditions, it is possible to selectively remove some of the monoesters lining the pore to form a hydrogen phosphonate while giving an isomorphous structure. This increases the affinity of the framework for CO2 giving higher ambient uptake, higher heat of adsorption, and much higher calculated selectivity for CO2 over both N2 and CH4. Formation of the acid groups is noteworthy as complexation with the parent acid gives a different structure.  相似文献   

14.
Adsorption is one of the main mechanisms involved in the ECBM process, a technology where CO2 (or flue gas, i.e. a CO2/N2 mixture) is injected into a deep coal bed, with the aim of storing CO2 by simultaneously recovering CH4. A detailed understanding of the microscopic adsorption process is therefore needed, as the latter controls the displacement process. A lattice DFT model, previously extended to mixtures, has been applied to predict the competitive adsorption behavior of CO2, CH4 and N2 and of their mixtures in slit-shaped pores of 1.2 and 8 nm width. In particular, the effect of temperature, bulk composition and density on the resulting lattice pore profiles and on the lattice excess adsorption isotherms has been investigated. Important insights could be obtained; when approaching near critical conditions in the mesopores, a characteristic peak in the excess adsorption isotherm of CO2 appears. The same effect could be observed neither for the other gases nor in the micropores. Moreover, in the case of mixtures, a depletion of the less adsorbed species close to the adsorbent surface is observed, which eventually results in negative lattice excess adsorption at high bulk densities.  相似文献   

15.
The correlation between chemical structure and gas transport properties is considered for a new class of membrane materials based on structurally similar polyphenylquinoxalines that are characterized by different numbers of flexible-O-ether bonds in the repeating unit and different chain rigidities. Permeability, diffusion, and solubility coefficients have been estimated for the gases H2, He, O2, N2, CO, CO2, and CH4; separation factors for various gas pairs have been determined. For the materials with a similar level of cohesive energy density, which characterizes interchain interactions, permeability decreases with a decrease in chain rigidity, whereas selectivity of gas separation increases.  相似文献   

16.
The removal of impurity gases (N2, CO2) in natural gas is critical to the efficient use of natural gas. In this work, the selective adsorption for N2 and CO2 over CH4 on MIL-100 (M) (M=4Cr, 10Cr, 6Fe, 1In, 1Sc, 3V) is studied by density functional theory (DFT) calculations. The calculated adsorption energy of the large-size cluster model (LC) of MIL-100 (M) shows that the 4MIL-100 (4Cr) is the best at the refinement of natural gas due to the lower adsorption energy of CH4 (−2.58 kJ/mol) in comparison with that of N2 (−21.49 kJ/mol) and CO2 (−23.82 kJ/mol). 1MIL-100 (1Sc) and 1MIL-100 (6Fe) can also achieve selective adsorption and follows the order 4MIL-100 (4Cr)>1MIL-100 (1Sc)>1MIL-100 (6Fe). In the research of the selective adsorption mechanism of MIL-100 (M) (M=4Cr, 1Sc, 6Fe), the independent gradient model (IGM) indicates that these outstanding adsorbents interact with CO2 and N2 mainly through the electrostatic attractive interaction, while the van der Walls interaction dominates in the interaction with CH4. The atomic Projected Density of State (PDOS) further confirms that CH4 contributes least to the intermolecular interaction than that of CO2 and N2. Through the scrutiny of molecular orbitals, it is found that electrons transfer from the gas molecule to the metal site in the adsorption of CO2 and N2. Not only does the type of the metallic orbitals, but also the delocalization of the involved orbitals determines the selective adsorption performance of MIL-100. Both Cr and Sc share their orbitals with the gases, making 1MIL-100 (1Sc) another potential effective separator for CH4. Additionally, the comparison of adsorption energy and PDOS shows that the introduction of ligands such as benzene impedes the electron donation from gas molecules (CO2, N2) to the metal site, indicating electron-withdrawing ligands will further favor the adsorption.  相似文献   

17.
The transport properties of silicone rubber are reported at 35°C for a series of pure gases (He, N2, CH4, CO2, and C2H4) and gas mixtures (CO2/CH4 and N2/CO2) for pressures up to 60 atm. The effects of pressure and concentration on the permeability of various gases have been analyzed to consider plasticization and hydrostatic compression effects. Over an extended pressure and concentration range, both compression of free volume and eventual plasticization phenomena were observed for the various penetrants. In pure component studies, plasticization effects tended to dominate hydrostatic compression effects for the more condensible penetrants (C2H4 and CO2) while the reverse was true for the low sorbing N2 and He. These issues are discussed in terms of penetrant diffusion coefficients versus pressure to clarify the interplay between the opposing effects for the penetrants of markedly different solubilities. Additional insight into the somewhat complex interplay of the plasticization and hydrostatic compression effects are given by mixed gas permeation results. It was found that the permeability of nitrogen in a 10/90 CO2/N2 and a 50/50 CO2/N2 mixture was increased by the presence of CO2 because the plasticizing nature of CO2 is able to overcome nitrogen's compression effect.  相似文献   

18.
The goal of this work is to explore new polyimide materials that exhibit both high permeability and high selectivity for specific gases. Copolyimides offer the possibility of preparing membranes with gas permeabilities and selectivities not obtainable with homopolyimides. A series of novel fluorinated copolyimides were synthesized with various diamine compositions by chemical imidization in a two-pot procedure. Polyamic acids were prepared by stoichiometric addition of solid dianhydride in portions to the diamine(s). The gas permeation behavior of 2,2′-bis(3,4′-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)-2,6-diamine toluene (2,6-DAT)/1,3-phenylenediamine (mPDA) polyimides was investigated. The physical properties of the copolyimides were characterized by IR, DSC and TGA. The glass transition temperature increased with increase in 2,6-DAT content. All the copolyimides were soluble in most of the common solvents. The gas permeability coefficients decreased with increasing mPDA content. However, the permselectivity of gas pairs such as H2/N2, O2/N2, and CO2/CH4 was enhanced with the incorporation of mPDA moiety. The permeability coefficients of H2, O2, N2, CO2 and CH4 were found to decrease with the increasing order of kinetic diameters of the penetrant gases. 6FDA-2,6-DAT/mPDA (3:1) copolyimide and 6FDA-2,6-DAT polyimide had high separation properties for H2/N2, O2/N2, CO2/CH4. Their H2, O2 and CO2 permeability coefficients were 64.99 Barrer, 5.22 Barrer, 23.87 Barrer and 81.96 Barrer, 8.83 Barrer, 39.59 Barrer, respectively, at 35°C and 0.2 MPa (1 Barrer = 10−10 cm3 (STP)·cm·cm−2·s−1·cmHg−1) and their ideal permselectivities of H2/N2, O2/N2 and CO2/CH4 were 69.61, 6.09, 63.92 and 53.45, 5.76, 57.41, respectively. Moreover, all of the copolyimides studied in this work exhibited similar performance, lying on or above the existing upper bound trade-off lines between permselectivity and permeability. They may be utilized for commercial gas separation membrane materials. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

19.
Investigating the adsorption characteristics of CO2, N2 and CH4 on kaolinite clay is beneficial for enhanced shale gas recovery by gas injection. In this paper, the experiments of CO2, N2 and CH4 adsorption at 288 K, 308 K and 328 K on kaolinite clay were conducted, and the thermodynamics analysis of adsorption of three gases was performed. The findings reveal that the order of the uptakes of three gases on kaolinite clay is as follows: N2 < CH4 < CO2. Reducing temperature enlarges the separation coefficients of CO2 over CH4 (αCO2/CH4), CO2 over N2 (αCO2/N2), and CH4 over N2 (αCH4/N2). The value of αCO2/CH4 greater than one validates that CO2 is capable to directly replace the pre-adsorbed CH4. The spontaneity of CO2 adsorption is the highest, while N2 has the lowest adsorption spontaneity. Injecting N2 into gas-bearing reservoir can cause CH4 desorption by lowering the spontaneity of CH4 adsorption. Adsorbed CO2 molecules form a most ordered rearrangement on kaolinite surface. The decrease rate of entropy loss for N2 adsorption is higher than those for CO2 and CH4 adsorption.  相似文献   

20.
Polyimide membranes derived from 6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been used to separate 50/50 CO2/CH4 mixtures and multicomponent synthetic natural gas mixtures at 35 °C and feed pressures up to 55 atm. For 6FDA-DAM:DABA 2:1 membranes the effects of thermal annealing and covalent crosslinking are decoupled with respect to effects on permeabilities and selectivity. Crosslinking at 295 °C with 1,4-butylene glycol and 1,4-cyclohexanedimethanol increases CO2 permeabilities by factors of 4.1 and 2.4, respectively, at 20 atm feed pressure, without a loss in selectivity, relative to crosslinking at 220 °C. Thermal annealing and crosslinking also reduce CO2 plasticization effects. Crosslinking of DABA-containing copolymers, therefore, can produce membranes with tunable transport properties that offer significantly higher performance with better plasticization-resistance than that reported in the literature for the commercial polymers Matrimid® and cellulose acetate for CO2 removal from natural gas mixtures. Separation of complex mixtures containing CO2, CH4, C2H6, C3H8, and C4H10 or toluene results in a significant decrease of the CO2 permeability, but only a moderate decrease in the CO2/CH4 selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号