首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical CO2 reduction reaction (ECO2RR) with controlled product selectivity is realized on Ag−Cu bimetallic surface alloys, with high selectivity towards C2 hydrocarbons/alcohols (≈60 % faradaic efficiency, FE), C1 hydrocarbons/alcohols (≈41 % FE) and CO (≈74 % FE) achieved by tuning surface compositions and applied potentials. In situ spectral investigations and theoretical calculations reveal that surface-composition-dependent d-band center could tune *CO binding strengths, regulating the *CO subsequent reaction pathways and then the product selectivity. Further adjusting the applied potentials will alter the energy of participated electrons, which leads to controlled ECO2RR selectivity towards desired products. A predominant region map, with an indicator proposed to evaluate the thermodynamic predominance of the *CO subsequent reactions, is then provided as a reliable theoretical guidance for the controllable ECO2RR product selectivity over bimetallic alloys.  相似文献   

2.
We have employed in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) calculations to study the CO reduction reaction (CORR) on Cu single-crystal surfaces under various conditions. Coadsorbed and structure-/potential-dependent surface species, including *CO, Cu−Oad, and Cu−OHad, were identified using electrochemical spectroscopy and isotope labeling. The relative abundance of *OH follows a “volcano” trend with applied potentials in aqueous solutions, which is yet absent in absolute alcoholic solutions. Combined with DFT calculations, we propose that the surface H2O can serve as a strong proton donor for the first protonation step in both the C1 and C2 pathways of CORR at various applied potentials in alkaline electrolytes, leaving adsorbed *OH on the surface. This work provides fresh insights into the initial protonation steps and identity of key interfacial intermediates formed during CORR on Cu surfaces.  相似文献   

3.
Upgrading CO2 into multi-carbon (C2+) compounds through the CO2 reduction reaction (CO2RR) offers a practical approach to mitigate atmospheric CO2 while simultaneously producing high value chemicals. The reaction pathways for C2+ production involve multi-step proton-coupled electron transfer (PCET) and C−C coupling processes. By increasing the surface coverage of adsorbed protons (*Had) and *CO intermediates, the reaction kinetics of PCET and C−C coupling can be accelerated, thereby promoting C2+ production. However, *Had and *CO are competitively adsorbed intermediates on monocomponent catalysts, making it difficult to break the linear scaling relationship between the adsorption energies of the *Had/*CO intermediate. Recently, tandem catalysts consisting of multicomponents have been developed to improve the surface coverage of *Had or *CO by enhancing water dissociation or CO2-to-CO production on auxiliary sites. In this context, we provide a comprehensive overview of the design principles of tandem catalysts based on reaction pathways for C2+ products. Moreover, the development of cascade CO2RR catalytic systems that integrate CO2RR with downstream catalysis has expanded the range of potential CO2 upgrading products. Therefore, we also discuss recent advancements in cascade CO2RR catalytic systems, highlighting the challenges and perspectives in these systems.  相似文献   

4.
Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2ER) to produce multicarbon (C2+) feedstocks (e.g., C2H4). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm−2 at a low potential of −0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2ER to C2H4.  相似文献   

5.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   

6.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   

7.
Operando nuclear resonant inelastic X-ray scattering (NRIXS) and X-ray absorption fine-structure spectroscopy (XAFS) measurements were used to gain insight into the structure and surface composition of FeCu and FeAg nanoparticles (NPs) during the electrochemical CO2 reduction (CO2RR) and to extract correlations with their catalytic activity and selectivity. The formation of a core–shell structure during CO2RR for FeAg NPs was inferred from the analysis of the operando NRIXS data (phonon density of states, PDOS) and XAFS measurements. Electrochemical analysis of the FeAg NPs revealed a faradaic selectivity of 36 % for CO in 0.1 M KHCO3 at −1.1 V vs. RHE, similar to that of pure Ag NPs. In contrast, a predominant selectivity towards H2 evolution is obtained in the case of the FeCu NPs, analogous to the results obtained for pure Fe NPs, although small Cu NPs have also been shown to favor H2 production.  相似文献   

8.
Advancing the performance of the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2, reducing the Faradaic efficiencies (FEs) and current densities for multi-carbon (C2+) products. Recent studies have proposed that increasing surface availability for CO2 by cation-exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro-kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group-functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro-kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm−2, more than twice of bare or hydrophilic Cu surfaces.  相似文献   

9.
Bimetallic tandem catalysts have emerged as a promising strategy to locally increase the CO flux during electrochemical CO2 reduction, so as to maximize the rate of conversion to C−C-coupled products. Considering this, a novel Cu/C−Ag nanostructured catalyst has been prepared by a redox replacement process, in which the ratio of the two metals can be tuned by the replacement time. An optimum Cu/Ag composition with similarly sized particles showed the highest CO2 conversion to C2+ products compared to non-Ag-modified gas-diffusion electrodes. Gas chromatography and in-situ Raman measurements in a CO2 gas diffusion cell suggest the formation of top-bound linear adsorbed *CO followed by consumption of CO in the successive cascade steps, as evidenced by the increasingνC−H bands. These findings suggest that two mechanisms operate simultaneously towards the production of HCO2H and C−C-coupled products on the Cu/Ag bimetallic surface.  相似文献   

10.
电催化CO2减排技术利用电能将过量的CO2转化为有附加值的化学品,是解决能源危机、实现碳中和的有效途径之一.电催化CO2还原反应(CO2RR)中的多碳产物(C2),如乙烯和乙醇,因其比C1产物具有更高的能量密度和更广泛的应用而受到较大关注.目前为止,Cu基催化剂被认为是获得C2产物的独特材料.研究者在提高Cu基催化剂C2产物的活性和选择性方面做了大量的工作,如催化剂形貌工程、活性位点设计和中间吸附性能调控等.许多理论和实验研究已经证明,Cu基催化剂上的C-C偶联过程是C2产物生成的速率决定步骤.优化C-C偶联过程的能垒是提高C2产物活性和选择性的重要而直接的策略.CO2RR在Cu上是由CO2还原吸附CO(*CO)并二聚生成C2产物引起的.C-C偶联过程与*CO的吸附性能密切相关.众所周知,CO是一种典型的极性分子,因此其在催化剂表面的吸附性能可能会受到活性位点周围的局部电场的影响.构建合适的局部电场是调节CO吸附性能和C-C偶联过程的潜在手段之一.前期工作(Nature,2016,537,382-386)证明了高曲率金纳米针可以在尖端产生高的局部电场.高局域电场诱导K+聚集,使活性位点周围CO2浓度升高,大大促进了Au纳米针上的CO生成.基于Au纳米针的局域电场促进了CO2RR的CO生成.本文利用Cu纳米针促进并优化C-C偶联反应来提高C2产物活性和选择性.结果表明,局部电场可以促进C-C偶联过程,进而增强CO2电还原生成C2产物.有限元模拟结果表明,高曲率铜纳米针处存在较强的局部电场;密度泛函理论计算结果表明,强电场能促进C-C耦合过程.在此基础上,制备了一系列不同曲率的Cu催化剂,其中,Cu纳米针(CuNNs)的曲率最高,Cu纳米棒(CuNRs)和Cu纳米颗粒(CuNPs)曲率次之.实验测得CuNNs上吸附的K+浓度最高,证明了纳米针上的局部电场最强.同时,CO吸附传感器测试表明,CuNNs对CO的吸附能力最强,原位傅里叶变换红外光谱显示,CuNNs的*COCO和*CO信号最强.由此可见,高曲率铜纳米针可以诱导高局部电场,从而促进C-C耦合过程.催化性能测试结果表明,在低电位(-0.6 V vs.RHE)下,Cu NNs对CO2RR的生成C2产物的法拉第效率值为44%,约为Cu NPs的2.2倍.综上,本文为CO2RR过程中提高多碳产物提供了新的思路.  相似文献   

11.
12.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   

13.
The design for non-Cu-based catalysts with the function of producing C2+ products requires systematic knowledge of the intrinsic connection between the surface state as well as the catalytic activity and selectivity. In this work, photochemical in situ spectral surface characterization techniques combined with the first principle calculations (DFT) were applied to investigate the relationships between the composition of surface states, coordinated motifs, and catalytic selectivity of a titanium oxynitride catalyst. When the catalyst mediates CO2 photoreduction, C2 product selectivity is positively correlated with the surface Ti2+/Ti3+ ratio and the surface oxidation state is regulated and controlled by coordinated motifs of N−Ti-O/V[O], which can reduce the potential dimerization energy barriers of *CO−CO* and promote spontaneous formation of the subsequent *CO−CH2* intermediate. This phenomenon provides a new perspective for the design of heterogeneous catalysts for photoreduction of CO2 into useful products.  相似文献   

14.
Previous density-functional theory (DFT) calculations show that sub-nanometric Cu clusters (i.e., 13 atoms) favorably generate CH4 from the CO2 reduction reaction (CO2RR), but experimental evidence is lacking. Herein, a facile impregnation-calcination route towards Cu clusters, having a diameter of about 1.0 nm with about 10 atoms, was developed by double confinement of carbon defects and micropores. These Cu clusters enable high selectivity for the CO2RR with a maximum Faraday efficiency of 81.7 % for CH4. Calculations and experimental results show that the Cu clusters enhance the adsorption of *H and *CO intermediates, thus promoting generation of CH4 rather than H2 and CO. The strong interactions between the Cu clusters and defective carbon optimize the electronic structure of the Cu clusters for selectivity and stability towards generation of CH4. Provided here is the first experimental evidence that sub-nanometric Cu clusters facilitate the production of CH4 from the CO2RR.  相似文献   

15.
In this work, the modulation of activity and selectivity via photoreduction of carbon dioxide under simulated sunlight was achieved by treating P25 and P25/Pt NPs with KOH. It found that KOH treatment could significantly improve the overall conversion efficiency and switch the selectivity for CO. Photoelectric characterizations and CO2-TPD demonstrated that the synergistic effect of K+ and OH- accelerated the separation and migration of photogenerated charges, and also improved CO2 adsorption level. Significantly, the K ions could act as active sites for CO2 adsorption and further activation. In situ FTIR measurements and DFT calculations confirmed that K+ enhanced the charge density of adjacent atoms and stabilize CO* groups, reducing the reaction energy barrier and inducing the switching of original CH4 to CO, which played a selective regulatory role. This study provides insights into the photocatalytic activity and selectivity of alkali-treated photocatalysts and facilitates the design of efficient and product-specific photocatalysis.  相似文献   

16.
Electrochemically converting CO2 to valuable chemicals holds great promise for closing the anthropogenic carbon cycle. Owing to complex reaction pathways and shared rate-determining steps, directing the selectivity of CO2/CO electrolysis to a specific multicarbon product is very challenging. We report here a strategy for highly selective production of acetate from CO electrolysis by constructing metal-organic interfaces. We demonstrate that the Cu-organic interfaces constructed by in situ reconstruction of Cu complexes show very impressive acetate selectivity, with a high Faradaic efficiency of 84.2 % and a carbon selectivity of 92.1 % for acetate production, in an alkaline membrane electrode assembly electrolyzer. The maximum acetate partial current density and acetate yield reach as high as 605 mA cm−2 and 63.4 %, respectively. Thorough structural characterizations, control experiments, operando Raman spectroscopy measurements, and density functional theory calculation results indicate that the Cu-organic interface creates a favorable reaction microenvironment that enhances *CO adsorption, lowers the energy barrier for C−C coupling, and facilitates the formation of CH3COOH over other multicarbon products, thus rationalizing the selective acetate production.  相似文献   

17.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   

18.
The key to the electrochemical conversion of CO2 lies in the development of efficient electrocatalysts with ease of operation, good conductivity, and rich active sites that fulfil the desired reaction direction and selectivity. Herein, an oxidative etching of Au20Cu80 alloy is used for the synthesis of a nanoporous Au3Cu alloy, representing a facile strategy for tuning the surface electronic properties and altering the adsorption behavior of the intermediates. HRTEM, XPS, and EXAFS results reveal that the curved surface of the synthesized nanoporous Au3Cu is rich in gold with unsaturated coordination conditions. It can be used directly as a self-supported electrode for CO2 reduction, and exhibits high Faradaic efficiency (FE) of 98.12 % toward CO at a potential of −0.7 V versus the reversible hydrogen electrode (RHE). The FE is 1.47 times that over the as-made single nanoporous Au. Density functional theory reveals that *CO has a relatively long distance on the surface of nanoporous Au3Cu, making desorption of CO easier and avoiding CO poisoning. The Hirshfeld charge distribution shows that the Au atoms have a negative charge and the Cu atoms exhibit a positive charge, which separately bond to the C atom and O atom in the *COOH intermediate through a bidentate mode. This affords the lowest *COOH adsorption free energy and low desorption energy for CO molecules.  相似文献   

19.
We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu−S2N1 active sites (named Cu6(MBD)6, MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu−S3 sites, the Cu6(MBD)6 with Cu−S2N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at −1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2H4), with the hydrocarbons partial current density of −183.4 mA cm−2. Theoretical calculations reveal that the symmetry-broken Cu−S2N1 sites can rearrange the Cu 3d orbitals with as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C−C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2RR towards highly-valued products.  相似文献   

20.
Electrochemical reduction reaction of carbon monoxide (CORR) offers a promising way to manufacture acetic acid directly from gaseous CO and water at mild condition. Herein, we discovered that the graphitic carbon nitride (g-C3N4) supported Cu nanoparticles (Cu−CN) with the appropriate size showed a high acetate faradaic efficiency of 62.8 % with a partial current density of 188 mA cm−2 in CORR. In situ experimental and density functional theory calculation studies revealed that the Cu/C3N4 interface and metallic Cu surface synergistically promoted CORR into acetic acid. The generation of pivotal intermediate −*CHO is advantage around the Cu/C3N4 interface and migrated *CHO facilitates acetic acid generation on metallic Cu surface with promoted *CHO coverage. Moreover, continuous production of acetic acid aqueous solution was achieved in a porous solid electrolyte reactor, indicating the great potential of Cu−CN catalyst in the industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号