首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non‐monotonic size‐dependence of the selectivity in cube‐shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.  相似文献   

2.
Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2ER) to produce multicarbon (C2+) feedstocks (e.g., C2H4). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm−2 at a low potential of −0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2ER to C2H4.  相似文献   

3.
Polynary single‐atom structures can combine the advantages of homogeneous and heterogeneous catalysts while providing synergistic functions based on different molecules and their interfaces. However, the fabrication and identification of such an active‐site prototype remain elusive. Here we report isolated diatomic Ni‐Fe sites anchored on nitrogenated carbon as an efficient electrocatalyst for CO2 reduction. The catalyst exhibits high selectivity with CO Faradaic efficiency above 90 % over a wide potential range from ?0.5 to ?0.9 V (98 % at ?0.7 V), and robust durability, retaining 99 % of its initial selectivity after 30 hours of electrolysis. Density functional theory studies reveal that the neighboring Ni‐Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO‐adsorbed moiety upon CO2 uptake.  相似文献   

4.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

5.
Molecular catalysts have been shown to have high selectivity for CO2 electrochemical reduction to CO, but with current densities significantly below those obtained with solid-state materials. By depositing a simple Fe porphyrin mixed with carbon black onto a carbon paper support, it was possible to obtain a catalytic material that could be used in a flow cell for fast and selective conversion of CO2 to CO. At neutral pH (7.3) a current density as high as 83.7 mA cm−2 was obtained with a CO selectivity close to 98 %. In basic solution (pH 14), a current density of 27 mA cm−2 was maintained for 24 h with 99.7 % selectivity for CO at only 50 mV overpotential, leading to a record energy efficiency of 71 %. In addition, a current density for CO production as high as 152 mA cm−2 (>98 % selectivity) was obtained at a low overpotential of 470 mV, outperforming state-of-the-art noble metal based catalysts.  相似文献   

6.
The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2R, a two-step process, with first CO2R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2.  相似文献   

7.
A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at −1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.  相似文献   

8.
Electrochemical reactors that electrolytically convert CO2 into higher-value chemicals and fuels often pass a concentrated hydroxide electrolyte across the cathode. This strongly alkaline medium converts the majority of CO2 into unreactive HCO3 and CO32− byproducts rather than into CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this undesirable reaction chemistry because CO does not react with OH. Moreover, CO can be more readily reduced into products containing two or more carbon atoms (i. e., C2+ products) compared to CO2. We demonstrate here that an electrocatalyst layer derived from copper phthalocyanine ( CuPc ) mediates this conversion effectively in a flow cell. This catalyst achieved a 25 % higher selectivity for acetate formation at 200 mA/cm2 than a known state-of-art oxide-derived Cu catalyst tested in the same flow cell. A gas diffusion electrode coated with CuPc electrolyzed CO into C2+ products at high rates of product formation (i. e., current densities ≥200 mA/cm2), and at high faradaic efficiencies for C2+ production (FEC2+; >70 % at 200 mA/cm2). While operando Raman spectroscopy did not reveal evidence of structural changes to the copper molecular complex, X-ray photoelectron spectroscopy suggests that the catalyst undergoes conversion to a metallic copper species during catalysis. Notwithstanding, the ligand environment about the metal still impacts catalysis, which we demonstrated through the study of a homologous CuPc bearing ethoxy substituents. These findings reveal new strategies for using metal complexes for the formation of carbon-neutral chemicals and fuels at industrially relevant conditions.  相似文献   

9.
CO2 electroreduction is a promising technique for satisfying both renewable energy storage and a negative carbon cycle. However, it remains a challenge to convert CO2 into C2 products with high efficiency and selectivity. Herein, we report a nitrogen‐doped ordered cylindrical mesoporous carbon as a robust metal‐free catalyst for CO2 electroreduction, enabling the efficient production of ethanol with nearly 100 % selectivity and high faradaic efficiency of 77 % at −0.56 V versus the reversible hydrogen electrode. Experiments and density functional theory calculations demonstrate that the synergetic effect of the nitrogen heteroatoms and the cylindrical channel configurations facilitate the dimerization of key CO* intermediates and the subsequent proton–electron transfers, resulting in superior electrocatalytic performance for synthesizing ethanol from CO2.  相似文献   

10.
Nanostructured surfaces have been shown to greatly enhance the activity and selectivity of many different catalysts. Here we report a nanostructured copper surface that gives high selectivity for ethylene formation from electrocatalytic CO2 reduction. The nanostructured copper is easily formed in situ during the CO2 reduction reaction, and scanning electron microscopy (SEM) shows the surface to be dominated by cubic structures. Using online electrochemical mass spectrometry (OLEMS), the onset potentials and relative selectivity toward the volatile products (ethylene and methane) were measured for several different copper surfaces and single crystals, relating the cubic shape of the copper surface to the greatly enhanced ethylene selectivity. The ability of the cubic nanostructure to so strongly favor multicarbon product formation from CO2 reduction, and in particular ethylene over methane, is unique to this surface and is an important step toward developing a catalyst that has exclusive selectivity for multicarbon products.  相似文献   

11.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH.  相似文献   

12.
In this work, the modulation of activity and selectivity via photoreduction of carbon dioxide under simulated sunlight was achieved by treating P25 and P25/Pt NPs with KOH. It found that KOH treatment could significantly improve the overall conversion efficiency and switch the selectivity for CO. Photoelectric characterizations and CO2-TPD demonstrated that the synergistic effect of K+ and OH- accelerated the separation and migration of photogenerated charges, and also improved CO2 adsorption level. Significantly, the K ions could act as active sites for CO2 adsorption and further activation. In situ FTIR measurements and DFT calculations confirmed that K+ enhanced the charge density of adjacent atoms and stabilize CO* groups, reducing the reaction energy barrier and inducing the switching of original CH4 to CO, which played a selective regulatory role. This study provides insights into the photocatalytic activity and selectivity of alkali-treated photocatalysts and facilitates the design of efficient and product-specific photocatalysis.  相似文献   

13.
Efficient electroreduction of carbon dioxide (CO2) to ethanol is of great importance, but remains a challenge because it involves the transfer of multiple proton–electron pairs and carbon–carbon coupling. Herein, we report a CoO-anchored N-doped carbon material composed of mesoporous carbon (MC) and carbon nanotubes (CNT) as a catalyst for CO2 electroreduction. The faradaic efficiencies of ethanol and current density reached 60.1% and 5.1 mA cm−2, respectively. Moreover, the selectivity for ethanol products was extremely high among the products produced from CO2. A proposed mechanism is discussed in which the MC–CNT/Co catalyst provides a relay catalytic platform, where CoO catalyzes the formation of CO* intermediates which spill over to MC–CNT for carbon–carbon coupling to form ethanol. The high selectivity for ethanol is attributed mainly to the highly selective carbon–carbon coupling active sites on MC–CNT.

The relay catalytic platform is very efficient and selective for CO2 electroreduction to ethanol.  相似文献   

14.
Closing the anthropogenic carbon cycle by converting CO2 into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2 in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N-doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2 reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at −0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2 evolution reaction (HER) to compete with the CO2 reduction reaction (CO2RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size-dependent CO2 reduction for various sizes of Ni metal catalysts.  相似文献   

15.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of −0.28 V vs. RHE and partial current density of over 200 mA cm−2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth-based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   

16.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of ?0.28 V vs. RHE and partial current density of over 200 mA cm?2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth‐based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   

17.
The reduction of carbon dioxide (CO2) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO2 reduction reaction (CO2RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO2RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO)2CO3 nanostructures. The as-prepared material exhibits high activity and selectivity for CO2RR to formate, with nearly 94% faradaic efficiency at −1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from −0.83 to −1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO2RR/methanol oxidation reaction (CO2RR/MOR) electrolytic system for overall CO2 splitting was constructed, evidencing the feasibility of its practical implementation.  相似文献   

18.
Electrochemical and photoelectrochemical CO2 reductions were carried out with Re(bh‐bipy)(CO)3(OH2) cocatalysts in aqueous electrolytes. Competition between hydrogen evolution and CO2 reduction was observed under (photo)electrochemical conditions for both glassy carbon and CuInS2 electrodes. The partial current density for CO generation is limited even though the additional potential is applied. However, electrochemical hydrogen evolution was suppressed under photoelectrochemical conditions, and the selectivity and partial current density for CO were considerably increased when compared to the electrochemical reduction in an identical electrode/electrolyte system. This finding may provide insights into using semiconductor/liquid junctions for solar fuel devices to overcome the limitations of electrolysis systems with an external bias.  相似文献   

19.
Electrochemical CO2 reduction (CO2R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13CO2/12CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2R in acidic media.  相似文献   

20.
The electroreduction of CO2(CO2RR) into value-added chemicals is a sustainable strategy for mitigating global warming and managing the global carbon balance. However, developing an efficient and selective catalyst is still the central challenge. Here, we developed a simple two-step pyrolysis method to confine low-valent Ni-based nanoparticles within nitrogen-doped carbon(Ni-NC). As a result, such Ni-based nanoparticles can effectively reduce CO2 to CO, with a max...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号