首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Some properties of small sodium clusters, comprising up to 45 atoms, are described using a projected spherical single particle basis. The variation of the cluster shape and inner density with the number of atoms is studied. Seemingly chestnut, clusterization and halo like structures are identified for several metallic clusters. Static polarizabilities and plasmon frequencies are calculated and compared with experimental data and with results obtained in different approaches. Received 28 November 2000 and Received in final form 15 February 2001  相似文献   

2.
3.
Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380 mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, van der Waals-like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25 atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.  相似文献   

4.
提出碱金属钠原子修饰笼形Si_6团簇的结构模型,采用密度泛函理论(DFT)研究钠原子修饰笼形Si_6团簇的结构及储氢性能.研究结果表明,氢分子与笼形Si_6团簇表面相互作用很弱,氢分子在其表面容易脱附.采用钠原子修饰笼形Si_6团簇后可有效避免氢分子的脱附,并且钠原子在笼形Si_6团簇的表面不发生团聚,有利于氢分子在其表面吸附和循环利用.研究发现在两个钠原子修饰笼形Si_6团簇的结构中,每个钠原子可以有效吸附六个氢分子.计算得到Na2Si_6团簇结构储氢的质量分数高达10.08 wt%,且氢分子的平均吸附能约为0.837 kcal/mol.可见,实现钠原子修饰笼形Si_6团簇结构在常温常压条件下储氢是有可能的.  相似文献   

5.
Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons’ collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.  相似文献   

6.
The nonlinear scattering of a laser pulse off spherical nanoclusters with free electrons and with a diffuse surface is examined in the collisionless hydrodynamics approximation in the framework of perturbation theory with respect to the laser pulse intensity, as well as of the steady‐state approximation. In a previous publication [S.V. Fomichev and W. Becker, Phys. Rev. A 81 , 063201 (2010)] we reported the full nonlinear hydrodynamic model of forced collective electron motion confined to a cluster with diffuse surface and introduced two different perturbation theories corresponding to different laser intensity regimes. In the current paper, in the framework of this hydrodynamic model we focus on the properties of plasmon resonance‐enhanced third‐harmonic generation in a spherical cluster and its dependence on the shape of its diffuse surface whose role increases for nonlinear processes. At the same time, the quadrupole second‐harmonic generation in a spherical cluster is also inspected as a necessary intermediate step. Both cold metal clusters in vacuum or in a dielectric surrounding and hot laser‐heated and laser‐ionized clusters are considered within the same approach for a wide range of the fundamental laser frequency. Nonlinear laser excitation of the dipole plasmon Mie resonance in spherical clusters, as well as of other respective multipole plasmon resonances is investigated analytically and numerically in detail (position, width, and strength) versus the cluster‐surface diffuseness, the outer ionization degree in charged clusters, the electron‐density diffuseness, and their interplay. Under certain conditions, depending on the various cluster parameters, different secondary nonlinear resonances are found. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We study the collective excitations of metal clusters approaching a metal surface. Using a simple model for the frequency-dependent dielectric constant ε(ω) and the multiple scattering method, we numerically investigate the shift in the plasmon resonance due to the coupling of the collective modes of the sphere with those of its mirror image. Results of the model calculation are verified by means of ab initio theory. As a prototype system we study Na9 + cluster on the Cu(100) surface. The representation of the solid surface by a cluster of several, typically 54 substrate atoms, is used in combination with a high level configuration interaction (CI) calculation. PACS 31.15.Dv; 36.40.Gk; 73.20.-f  相似文献   

8.
We report density functional theory calculations on the interaction of Pd atoms and small Pd clusters with an electron-rich MgO surface. This surface can be generated by forming a specific kind of defects, named (H+)(e) centers, using well known chemical recipes. By deposition of gas-phase Pd atoms on the properly functionalized MgO surface, one can generate collections of small Pd cluster anions with peculiar chemical properties. The (H+)(e) centers act as nucleation sites for diffusing Pd atoms and favor the formation of small, thermally stable clusters. The presence of an extra charge on the metal cluster results in a large vibrational red-shift of adsorbed CO molecules. The present results intend to stimulate experimental work to produce stable metal cluster anions on the surface of an ionic oxide.  相似文献   

9.
Optical Second Harmonic Generation (SHG) by metal clusters has been investigated. For this purpose clusters were generated by the deposition and nucleation of metal atoms on a LiF(100) single crystal surface under ultrahigh vacuum conditions. The size and shape of the metal particles was characterized by optical transmission spectroscopy. The SHG intensity was detected in situ as a function of cluster size during the nucleation. Fundamental wavelengths of =1064 and 532 nm were used and the SHG signal was measured for different polarization combinations of the incident and registered light. SH radiation is detectable for particles as small as approximately 1 nm. The signal grows monotonically as a function of particle size, passes a maximum and finally drops off. This behavior is discussed in terms of resonant enhancement of the signal by surface plasmon excitation and changes of (2) as a function of particle size and shape. In further experiments the chemisorption of oxygen on the surface of the metal particles was studied. The SH signal decreases as a function of oxygen coverage and amounts to only about 15% of the initial value upon chemisorption of one monolayer. This indicates that the SH signal originates almost exclusively from the surface of the clean clusters and that higher order bulk contributions are negligible.  相似文献   

10.
Noble metals that are deposited on a polymer surface exhibit surface diffusion and diffusion into the bulk. At the same time the metal atoms tend to form clusters because their cohesive energy is about two orders of magnitude higher than the cohesive energy of polymers. To selfconsistently simulate these coupled processes, we present in this paper a Kinetic Monte Carlo approach. Using a simple model with diffusion coefficients taken as input parameters allows us to perform a systematic study of the behavior of a large ensemble of metal atoms on a polymer surface eventually leading to polymer nanocomposites. Special emphasis is placed on the cluster growth, cluster size distribution and the penetration of clusters into the substrate. We also study the influence of surface defects and analyze how the properties of the resulting material can be controlled by variation of the deposition rate (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The time-dependent response of simple metal clusters to femtosecond laser pulses is investigated using the semiclassical theory based on the Vlasov equation. Starting from a Thomas-Fermi ground state the dynamics are calculated by use of the pseudoparticle method. Systems studied here are sodium clusters containing up to 147 atoms. Both, the energy transfer to the cluster, which is largely affected by the plasmon enhanced absorption, and the following release of energy to the ions are examined in detail. During the laser excitation the feedback of the absorption to the development of the plasmon energy is controlled by competing mechanisms: ionization and cluster expansion. Characteristics of the Coulomb explosion are studied as function of photon energy and cluster size, particularly with regard to the dynamical influence of collective excitations of the electrons. We also predict features in the angular distribution of the ions that could be measured to test the calculated dynamics.Received: 9 December 2003, Published online: 16 March 2004PACS: 52.50.Jm Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.) - 36.40.Vz Optical properties of clusters - 36.40.Gk Plasma and collective effects in clusters  相似文献   

12.
We investigate from a theoretical perspective structure and dynamics of Na clusters on a surface built from Ar layers grown on a metal support. The system is modeled by a hierarchical quantum-mechanical/molecular-mechanical (QM/MM) approach treating the cluster electrons with time-dependent density-functional theory, the Ar atoms classically, and the metal support as a continuous dielectric medium. Caution has been taken to describe properly the dynamical polarizability of the Ar substrate. We study the effect of the Ar substrate and particularly of the metal support on the cluster structure and dynamics. The binding of Na6 and Na8 to the Ar surface is found to by very weak and the effect of the dielectric response of the metal (DRM) turns out to be negligible. The global properties of the optical response of the Na clusters are slightly changed by the Ar substrate and the DRM while the detailed spectral fragmentation depends sensitively on any change of the environment. The deposition dynamics of small Na clusters is crucially influenced by the mechanical hardness of the metal support while the DRM makes little effect. We also study the dependence on the number of Ar layers. For the first few layers (from two to four), the deposition dynamics changes dramatically with the number of layers. The results stabilize from six layers on upwards.  相似文献   

13.
Starting from the Weisskopf theory decay rates for the evaporation of cluster atoms from hot liquid alkali metal clusters are derived. The crucial input quantity is the level density which is determined from empirical properties of the bulk, namely from the specific heat and the thermal expansion coefficient. The resulting rate expression is compared with decay rate formulas given by Engelking, Klots and Gspann. Furthermore, critical (appearance) sizes of multiply charged clusters are calculated by equating the rates for neutral monomer and light charged particle emission. Also shrinking and cooling rates of large hot clusters are determined by treating multiple emission of cluster atoms, thus establishing a time scale for the decay of clusters theoretically.  相似文献   

14.
CNDO molecular orbital calculations for nickel atom clusters containing from one to thirteen atoms in various geometric arrangements are presented. The parameters were selected so that an octahedral Ni6 cluster had an equilibrium inter-nuclear distance, d band occupancy, binding energy, Fermi level, and d band width approximating those of bulk nickel. For clusters with a given number of atoms the stability always increased in the order linear < planar < three-dimensional cluster. The general assumption that the binding energy per atom in metal clusters is proportional to the number of nearest neighbours is supported by these CNDO calculations although this relation is certainly not exact for small clusters. Examination of the calculated orbitals does not indicate a separation of the d band into one part made up from atomic t2g orbitals and another from eg orbitals. Overall the CNDO method appears to present a reasonable approach to calculating properties of small metal clusters.  相似文献   

15.
徐波  卢欢胜  刘波  刘刚  吴木生  欧阳楚英 《中国物理 B》2016,25(6):67103-067103
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.  相似文献   

16.
The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.  相似文献   

17.
An electron-spectroscopic analysis is made of layered nanostructures and clusters at the surface and in the bulk of a solid. A new method of forming metal/insulator/semiconductor (superconductor) nanostructures is proposed based on ion-stimulated metal segregation effects at the surface of low-temperature gallium arsenide and a 123 high-temperature superconductor. The geometric parameters and electronic structure of these nano-objects are studied. It is shown that their electronic properties can be controllably varied in situ by acting on the surface. The dimensional transformation of the electronic properties of metal clusters is studied for clusters in the insulator SiO2, in the superconductor LTMBE-GaAs, and on silicon and graphite surfaces. The nature of this transformation is clarified. A diagnostics for cluster ensembles is developed by which one can determine the parameters needed to describe singleelectron transport: the average number of atoms per cluster, the average distance between clusters and isolated atoms, and the chemical state of the atoms. Ensembles of silver clusters with specified parameters are obtained on a silicon surface. It is shown that these ensembles are potentially useful for developing single-electron devices. Zh. Tekh. Fiz. 69, 85–89 (September 1999)  相似文献   

18.
We observe reversible light assisted formation and evaporation of rubidium clusters embedded in nanoporous silica. Metallic nanoparticles are cyclically produced and evaporated by weak blue-green and near-infrared light, respectively. The atoms photodetached from the huge surface of the silica matrix build up clusters, whereas cluster evaporation is increased by induced surface plasmon excitation. Frequency tuning of light activates either one process or the other and the related changes of glass transparency become visible to the naked eye. We demonstrate that the porous silica, loaded with rubidium, shows memory of illumination sequences behaving as a rereadable and rewritable optical medium. These processes take place as a consequence of the strong confinement of atoms and particles at the nanoscale.  相似文献   

19.
An analytical approach is proposed to investigate the mechanism of implantation of size selected clusters into graphite, in order to explain the origin of linear variation of measured penetration depth with momentum or energy of incident cluster. In agreement with experimental observations, the cluster experiences, during its penetration, a force which consists in a component proportional with cluster velocity and a constant component. Expressions of these forces were obtained in the frame work of this approach. Regardless of whether the cluster breaks down into single atoms on the surface or not, there is evidence for existence of a wave generated under impact of cluster on the surface. Under the assumption that the cluster does not break up at impact on the surface, the penetration depth depends on the cross-section between the cluster and the surface, the cluster velocity and the properties of graphite. When the cluster fragments upon the impact on the surface, the generated wave is followed by a collective motion (??collective cascade??) of displaced atoms of target, including the constituents of cluster themselves, due to the transfer of cluster momentum. Thus, it is these displaced atoms which penetrate in the medium. During this collective penetration, some constituents of cluster can reach a certain depth which may be considered as the range of the deepest implanted constituents of cluster. It is shown that, the depth of penetration depends on the initial radius of cluster, its velocity and the properties of graphite. In addition, the depth varies non linearly with cluster velocity, for small clusters (n ?? 7), while for large clusters (n ?? 13), it varies (i) linearly with cluster velocity (or momentum) when the force proportional with speed of cluster is dominant. (ii) Linearly with the square of cluster velocity (or energy) if the constant force becomes dominant. It is shown that, a mechanism based on a collective motion of displaced atoms including the constituents of cluster themselves, induced by transfer of cluster momentum to the medium, permits to explain the behavior of measured depth of implanted clusters into graphite. This collective motion involves only one free parameter for all clusters of the same nature which are used as projectiles in the same experiment.  相似文献   

20.
The effect of a surrounding gain medium on the localized surface plasmon resonance in spheroidal metal particles is analyzed in the quasi-static limit of the Maxwell equations. It is shown that the gain required to create a singularity in the dynamic polarizability of the particle is significantly lower for non-spherical spheroids than for spheres, and can be as low as several hundred inverse centimeters for noble metals in the near infrared region of the spectrum. Resonant aspect ratios and gain values are calculated as a function of frequency for various metals. The use of non-spherically shaped nano-particles, along with gains achievable in semiconductors and dyes, can result in surface enhanced Raman scattering (SERS) signals which are dramatically enhanced. PACS 61.46.Df; 73.21.Hb; 78.67.Hc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号