首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set S of vertices in a graph G is a total dominating set of G if every vertex is adjacent to a vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt(G) of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. Haynes et al. (J. Combin. Math. Combin. Comput. 44 (2003) 115) showed that for any tree T of order at least 3, 1?sdγt(T)?3. In this paper, we give a constructive characterization of trees whose total domination subdivision number is 3.  相似文献   

2.
On the 2-rainbow domination in graphs   总被引:2,自引:0,他引:2  
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism GK2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is shown that for the generalized Petersen graphs GP(n,k) this number is between ⌈4n/5⌉ and n with both bounds being sharp.  相似文献   

3.
Suppose that G is a connected graph of order n and girth g<n. Let k be the multiplicity of an eigenvalue μ of G. Sharp upper bounds for k are n-g+2 when μ∈{-1,0}, and n-g otherwise. The graphs attaining these bounds are described.  相似文献   

4.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

5.
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G-v is less than the total domination number of G. These graphs we call γt-critical. If such a graph G has total domination number k, we call it k-γt-critical. We characterize the connected graphs with minimum degree one that are γt-critical and we obtain sharp bounds on their maximum diameter. We calculate the maximum diameter of a k-γt-critical graph for k?8 and provide an example which shows that the maximum diameter is in general at least 5k/3-O(1).  相似文献   

6.
The structural theory of matchings is used to establish lower bounds on the number of perfect matchings in n-extendable graphs. It is shown that any such graph on p vertices and q edges contains at least ⌈(n+1)!/4[q-p-(n-1)(2Δ-3)+4]⌉ different perfect matchings, where Δ is the maximum degree of a vertex in G.  相似文献   

7.
Let γ(G) denote the domination number of a graph G and let CnG denote the cartesian product of Cn, the cycle of length n?3, and G. In this paper, we are mainly concerned with the question: which connected nontrivial graphs satisfy γ(CnG)=γ(Cn)γ(G)? We prove that this equality can only hold if n≡1 (mod 3). In addition, we characterize graphs which satisfy this equality when n=4 and provide infinite classes of graphs for general n≡1 (mod 3).  相似文献   

8.
A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). If G does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then γt(G)?n/2. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of n/2 is sharp. However, every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n?10, then γt(G)?5n/11.  相似文献   

9.
We prove that each n-vertex plane graph with girth g≥4 admits a vertex coloring with at least ⌈n/2⌉+1 colors with no rainbow face, i.e., a face in which all vertices receive distinct colors. This proves a conjecture of Ramamurthi and West. Moreover, we prove for plane graph with girth g≥5 that there is a vertex coloring with at least if g is odd and if g is even. The bounds are tight for all pairs of n and g with g≥4 and n≥5g/2−3. * Supported in part by the Ministry of Science and Technology of Slovenia, Research Project Z1-3129 and by a postdoctoral fellowship of PIMS. ** Institute for Theoretical Computer Science is supported by Ministry of Education of CzechR epublic as project LN00A056.  相似文献   

10.
A set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). A graph is claw-free if it does not contain K1,3 as an induced subgraph. It is known [M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45] that if G is a connected graph of order n with minimum degree at least two and G∉{C3,C5, C6, C10}, then γt(G)?4n/7. In this paper, we show that this upper bound can be improved if G is restricted to be a claw-free graph. We show that every connected claw-free graph G of order n and minimum degree at least two satisfies γt(G)?(n+2)/2 and we characterize those graphs for which γt(G)=⌊(n+2)/2⌋.  相似文献   

11.
An upper bound for the domination number of the direct product of graphs is proved. It in particular implies that for any graphs G and H, γ(G×H)?3γ(G)γ(H). Graphs with arbitrarily large domination numbers are constructed for which this bound is attained. Concerning the upper domination number we prove that Γ(G×H)?Γ(G)Γ(H), thus confirming a conjecture from [R. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79]. Finally, for paired-domination of direct products we prove that γpr(G×H)?γpr(G)γpr(H) for arbitrary graphs G and H, and also present some infinite families of graphs that attain this bound.  相似文献   

12.
Let G be a graph of sufficiently large order n, and let the largest eigenvalue μ(G) of its adjacency matrix satisfies . Then G contains a cycle of length t for every t?n/320This condition is sharp: the complete bipartite graph T2(n) with parts of size n/2 and n/2 contains no odd cycles and its largest eigenvalue is equal to .This condition is stable: if μ(G) is close to and G fails to contain a cycle of length t for some t?n/321, then G resembles T2(n).  相似文献   

13.
A function f:V(G)→{-1,0,1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1}, fg, for which g(v)?f(v) for every vV(G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds.  相似文献   

14.
In this paper, we continue the study of total restrained domination in graphs, a concept introduced by Telle and Proskurowksi (Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550) as a vertex partitioning problem. A set S of vertices in a graph G=(V,E) is a total restrained dominating set of G if every vertex is adjacent to a vertex in S and every vertex of V?S is adjacent to a vertex in V?S. The minimum cardinality of a total restrained dominating set of G is the total restrained domination number of G, denoted by γtr(G). Let G be a connected graph of order n with minimum degree at least 2 and with maximum degree Δ where Δ?n-2. We prove that if n?4, then and this bound is sharp. If we restrict G to a bipartite graph with Δ?3, then we improve this bound by showing that and that this bound is sharp.  相似文献   

15.
Improved bounds on coloring of graphs   总被引:1,自引:0,他引:1  
  相似文献   

16.
A graph G   with no isolated vertex is total domination vertex critical if for any vertex vv of G   that is not adjacent to a vertex of degree one, the total domination number of G-vG-v is less than the total domination number of G  . We call these graphs γtγt-critical. If such a graph G has total domination number k, we call it k  -γtγt-critical. We verify an open problem of k  -γtγt-critical graphs and obtain some results on the characterization of total domination critical graphs of order n=Δ(G)(γt(G)-1)+1n=Δ(G)(γt(G)-1)+1.  相似文献   

17.
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let γc(G) denote the size of any smallest connected dominating set in G. A graph G is k-γ-connected-critical if γc(G)=k, but if any edge is added to G, then γc(G+e)?k-1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G was defined to be k-critical if the domination number of G is k, but if any edge is added to G, the domination number falls to k-1.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G), bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G) or, more generally, k-factor-critical if, for every set SV(G) with |S|=k, the graph G-S contains a perfect matching. In two previous papers [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].] on ordinary (i.e., not necessarily connected) domination, the first and third authors showed that under certain assumptions regarding connectivity and minimum degree, a critical graph G with (ordinary) domination number 3 will be factor-critical (if |V(G)| is odd), bicritical (if |V(G)| is even) or 3-factor-critical (again if |V(G)| is odd). Analogous theorems for connected domination are presented here. Although domination and connected domination are similar in some ways, we will point out some interesting differences between our new results for the case of connected domination and the results in [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].].  相似文献   

18.
A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex uV(D)?S has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by γ(D), is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted Γd(G), is the maximum directed domination number γ(D) over all orientations D of G. The directed domination number of a complete graph was first studied by Erd?s [P. Erd?s On a problem in graph theory, Math. Gaz. 47 (1963) 220–222], albeit in a disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show that αΓd(G)≤α(1+2ln(n/α)).  相似文献   

19.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree Δ has(1)lc(G) ≤Δ 21 if Δ≥ 9; (2)lc(G) ≤「Δ/2」 + 7 ifg ≥ 5; (3) lc(G) ≤「Δ/2」 + 2 ifg ≥ 7 and Δ≥ 7.  相似文献   

20.
Let G be a graph of order n and r, 1≤rn, a fixed integer. G is said to be r-vertex decomposable if for each sequence (n1,…,nr) of positive integers such that n1+?+nr=n there exists a partition (V1,…,Vr) of the vertex set of G such that for each i∈{1,…,r}, Vi induces a connected subgraph of G on ni vertices. G is called arbitrarily vertex decomposable if it is r-vertex decomposable for each r∈{1,…,n}.In this paper we show that if G is a connected graph on n vertices with the independence number at most ⌈n/2⌉ and such that the degree sum of any pair of non-adjacent vertices is at least n−3, then G is arbitrarily vertex decomposable or isomorphic to one of two exceptional graphs. We also exhibit the integers r for which the graphs verifying the above degree-sum condition are not r-vertex decomposable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号