首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Let G=(V,E) be a graph. A set SV is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V-S is adjacent to a vertex in V-S. A set SV is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The total restrained domination number of G (restrained domination number of G, respectively), denoted by γtr(G) (γr(G), respectively), is the smallest cardinality of a total restrained dominating set (restrained dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds. It is known (see [G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69.]) that if G is a graph of order n?2 such that both G and are not isomorphic to P3, then . We also provide characterizations of the extremal graphs G of order n achieving these bounds.  相似文献   

2.
Let G=(V,E) be a graph. A subset SV is a dominating set of G, if every vertex uVS is dominated by some vertex vS. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2008) 603-610] proved that and conjectured that the upper bound is the exact domination number. In this paper we prove this conjecture.  相似文献   

3.
Let G=(V,E) be a graph. A set SV is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V-S is adjacent to a vertex in V-S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. We show that if T is a tree of order n, then . Moreover, we show that if T is a tree of order , then . We then constructively characterize the extremal trees T of order n achieving these lower bounds.  相似文献   

4.
A set S of vertices of a graph G=(V,E) is a dominating set if every vertex of V(G)?S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. The domination subdivision number  is the minimum number of edges that must be subdivided in order to increase the domination number. Velammal showed that for any tree T of order at least 3, . In this paper, we give two characterizations of trees whose domination subdivision number is 3 and a linear algorithm for recognizing them.  相似文献   

5.
6.
7.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

8.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is a connected graph of order n and minimum degree δ and not isomorphic to one of nine exceptional graphs, then .  相似文献   

9.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

10.
A dominating set of a graph G=(V,E) is a subset SV such that every vertex not in S is adjacent to at least one vertex of S. The domination number of G is the cardinality of a smallest dominating set. The global domination number, γg(G), is the cardinality of a smallest set S that is simultaneously a dominating set of both G and its complement . Graphs for which γg(Ge)>γg(G) for all edges eE are characterized, as are graphs for which γg(Ge)<γg(G) for all edges eE whenever is disconnected. Progress is reported in the latter case when is connected.  相似文献   

11.
A set S of vertices of a connected graph G is a doubly connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and VS are connected. The doubly connected domination numberγcc(G) is the minimum size of such a set. We prove that when G and are both connected of order n, and we describe the two infinite families of extremal graphs achieving the bound.  相似文献   

12.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

13.
A Roman dominating function of a graph G is a labeling f:V(G)?{0,1,2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑vV(G)f(v) over such functions. A Roman dominating function of G of weight γR(G) is called a γR(G)-function. A Roman dominating function f:V?{0,1,2} can be represented by the ordered partition (V0,V1,V2) of V, where Vi={vVf(v)=i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed the following question: What can we say about the minimum and maximum values of |V0|,|V1|,|V2| for a γR-function f=(V0,V1,V2) of a graph G? In this paper we first show that for any connected graph G of order n≥3, , where γ(G) is the domination number of G. Also we prove that for any γR-function f=(V0,V1,V2) of a connected graph G of order n≥3, , and .  相似文献   

14.
In 1968, Vizing proposed the following conjecture: If G=(V,E) is a Δ-critical graph of order n and size m, then . This conjecture has been verified for the cases of Δ≤5. In this paper, we prove that when Δ=4. It improves the known bound for Δ=4 when n>6.  相似文献   

15.
Huajun Tang 《Discrete Mathematics》2008,308(15):3416-3419
Let G=(V,E) be a graph. A signed dominating function on G is a function f:V→{-1,1} such that for each vV, where N[v] is the closed neighborhood of v. The weight of a signed dominating function f is . A signed dominating function f is minimal if there exists no signed dominating function g such that gf and g(v)?f(v) for each vV. The upper signed domination number of a graph G, denoted by Γs(G), equals the maximum weight of a minimal signed dominating function of G. In this paper, we establish an tight upper bound for Γs(G) in terms of minimum degree and maximum degree. Our result is a generalization of those for regular graphs and nearly regular graphs obtained in [O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293] and [C.X. Wang, J.Z. Mao, Some more remarks on domination in cubic graphs, Discrete Math. 237 (2001) 193-197], respectively.  相似文献   

16.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

17.
Inverse degree and edge-connectivity   总被引:2,自引:0,他引:2  
Let G be a connected graph with vertex set V(G), order n=|V(G)|, minimum degree δ and edge-connectivity λ. Define the inverse degree of G as , where d(v) denotes the degree of the vertex v. We show that if
  相似文献   

18.
Let G be a refinement of a star graph with center c. Let be the subgraph of G induced on the vertex set V(G)?{c or end vertices adjacent to c}. In this paper, we completely determine the structure of commutative zero-divisor semigroups S whose zero-divisor graph G=Γ(S) and S satisfy one of the following properties: (1) has at least two connected components, (2) is a cycle graph Cn of length n≥5, (3) is a path graph Pn with n≥6, (4) S is nilpotent and Γ(S) is a finite or an infinite star graph. For any finite or infinite cardinal number n≥2, we prove that for any nilpotent semigroup S with zero element 0, S4=0 if Γ(S) is a star graph K1,n. We prove that there is exactly one nilpotent semigroup S such that S3≠0 and Γ(S)≅K1,n. For several classes of finite graphs G which are refinements of a star graph, we also obtain formulas to count the number of non-isomorphic corresponding semigroups.  相似文献   

19.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

20.
On edge domination numbers of graphs   总被引:1,自引:0,他引:1  
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号