首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hardness and the elastic modulus of Cu thin films on Si, Ti, Cu, and Al substrates are investigated. It is demonstrated that the use of the Oliver-Pharr method in combination with the technique for evaluating the true hardness makes it possible to determine uniquely the hardness of Cu thin films at different ratios between the hardnesses of the film and the substrate. The elastic modulus of thin films can be correctly measured by the Oliver-Pharr method only in the case where the film and the substrate exhibit identical elastic properties. In order to determine the elastic moduli of films with the use of the parameter P/S 2, the film and the substrate should have close values of both the hardness and the elastic modulus.  相似文献   

2.
仲崇贵  蒋青  方靖淮  江学范  罗礼进 《物理学报》2009,58(10):7227-7234
运用Landau-Devonshire热力学唯像理论,考虑铁电相和铁磁相的电致伸缩、磁致伸缩效应以及产生于铁电/铁磁和薄膜/基底界面的弹性应力作用,两次重整介电和磁作用系数得到了这种多铁系统在Landau自由能函数下的本征二次方磁电耦合形式,从而研究了外延1-3型纳米多铁复合薄膜中极化、磁化随薄膜厚度、温度的变化以及该薄膜中外加电场诱导的磁化变化.结果表明薄膜平面内的应压力的弛豫使得磁化强度和极化强度随薄膜厚度的增加而减少,外加电场不仅能诱导铁电相极化场翻转,而且由于铁电和铁磁相界面竖直方向的弹性耦合导致 关键词: 多铁 磁电效应 磁致伸缩 薄膜  相似文献   

3.
《Applied Surface Science》2005,239(3-4):259-261
The thickness dependent structural transition of epitaxially grown thin films from a tetragonal structure to the corresponding bulk structure is thermodynamically considered. It is found that there exists a competition between elastic energy of the tetragonal structure and film–substrate interface energy. Equilibrium between these energies is present at a critical layer number nc. The predictions for nc are in agreement with the experimental results of some different metallic films deposited on fcc metallic substrates.  相似文献   

4.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

5.
The averaged dielectric, piezoelectric, and elastic constants of thin polycrystalline barium titanate and lead titanate films are calculated within a modified effective-medium approximation, which takes fully into account piezoelectric interactions between crystallites. Films with c-or a-type crystal texture resulting from mechanical interaction with the substrate are considered when the film becomes ferroelectric under cooling of the heterostructure. The dependences of the effective material constants of textured films on the residual macroscopic polarization of a film are described. An analysis is made of the effect of two-dimensional clamping of a film on a thick substrate on measurements of dielectric and piezoelectric constants. Fiz. Tverd. Tela (St. Petersburg) 40, 2206–2212 (December 1998)  相似文献   

6.
The interface roughness and interface roughness cross-correlation properties affect the scattering losses of high-quality optical thin films. In this paper, the theoretical models of light scattering induced by surface and interface roughness of optical thin films are concisely presented. Furthermore, influence of interface roughness cross-correlation properties to light scattering is analyzed by total scattering losses. Moreover, single-layer TiO2 thin film thickness, substrate roughness of K9 glass and ion beam assisted deposition (IBAD) technique effect on interface roughness cross-correlation properties are studied by experiments, respectively. A 17-layer dielectric quarter-wave high reflection multilayer is analyzed by total scattering losses. The results show that the interface roughness cross-correlation properties depend on TiO2 thin film thickness, substrate roughness and deposition technique. The interface roughness cross-correlation properties decrease with the increase of film thickness or the decrease of substrates roughness. Furthermore, ion beam assisted deposition technique can increase the interface roughness cross-correlation properties of optical thin films. The measured total scattering losses of 17-layer dielectric quarter-wave high reflection multilayer deposited with IBAD indicate that completely correlated interface model can be observed, when substrate roughness is about 2.84 nm.  相似文献   

7.
La0.8Sr0.2AlO3 (LSAO) thin films are grown on SrTiO3 (STO) and MgO substrates by laser molecular beam epitaxy. The LSAO thin film on oxygen deficient STO substrate exhibits metallic behaviour over the temperature range of 80--340K. The optical transmittance spectrum indicates that theLSAO thin films on MgO substrate are insulating at room temperature. The transport properties of LSAO thin films on STO substrates deposited in different oxygen pressure are compared. Our results indicate that oxygen vacancies in STO substrates should be mainly responsible for the transport behaviour of LSAO thin films.  相似文献   

8.
Mechanical properties of thin films on substrates can be evaluated directly through nanoindentation. For a comprehensive study, thin films should be characterized via Young’s modulus, yield stress and strain-hardening exponent at constant temperature. In this paper, we evaluate these effects of thin films on silicon substrate through finite element analysis. Thin films, from soft to hard relative to the silicon substrate, are investigated in three categories: soft films on hard substrates, soft to hard films on no elastic mismatch substrates, and hard films on soft substrates. In addition to examining the load-displacement curve, the normalized hardness versus normalized indentation depth is checked as well to characterize its substrate effect. We found that the intrinsic film hardness can be acquired with indentation depths of less than 12% and 20% of their film thickness for soft films on hard substrates and for soft to hard films on no elastic mismatch substrates, respectively. Nevertheless, nanoindentation of hard films on soft substrates cannot determine the intrinsic film hardness due to the fact that a soft substrate cannot support a hard film. By examining the von Mises stresses, we discovered a significant bending phenomenon in the hard film on the soft substrate. PACS 61.43.Bn; 62.20.-x; 68.03.Hj; 68.05.Cf; 68.08.De  相似文献   

9.
The objective of this work is to develop an experimental indentation based method to determine the fracture force at the interface of Pd thin films and SrTiO3 perovskite substrate. This paper reports on the results obtained for indentation into Pd thin films which were deposited in various thicknesses from 20 nm to 200 nm under vacuum and 300 °C substrate temperature by an electron beam physical vapor deposition. Initially, the relation between grain size, elastic module and hardness was considered as a function of film thickness. Thereafter, in developing new method, oscillating indentation was performed with different applied forces and oscillating times in order to measure the critical fracture force in each thickness. The effect of oscillating time on plastically deformed regions surrounding an indentation was schematically explained in conjunction with variation of oscillating time to determine the interfacial properties of the Pd thin film. Furthermore, the accuracy of the critical fracture force was ensured by applied force versus piling up height plot. The method is validated experimentally for the soft thin films over the hard substrate. However, further study would be essential to measure the film adhesion by means of fracture force at the interface.  相似文献   

10.
Nanocrystalline thin films of Ni–Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120?keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni–Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni–Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni–Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9?×?1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni–Ti thin films.  相似文献   

11.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

12.
王权  丁建宁  何宇亮  薛伟  范真 《物理学报》2007,56(8):4834-4840
使用等离子体增强化学气相沉积系统,在射频和直流负偏压的双重激励下制备了本征和掺杂后的氢化硅薄膜.利用拉曼谱对薄膜进行了微结构分析,用纳米压痕系统研究了薄膜的介观力学行为.研究表明:制备于玻璃衬底上的氢化硅薄膜,由于存在非晶态的过渡缓冲层,弹性模量小于相应的制备于单晶硅衬底的薄膜.对于掺杂的氢化硅薄膜,由于磷的掺入使得薄膜晶粒细化、有序度提高,薄膜的晶态比一般在40%以上.而硼的掺入,薄膜晶态比减小,一般低于40%.同时发现,掺磷、本征和掺硼的氢化硅薄膜分别在晶态比为45%,30%和15%左右处,弹性模量较 关键词: 氢化硅薄膜 拉曼谱 弹性模量 晶态比  相似文献   

13.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

14.
La0.8Ca0.2MnO3 (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5°, 10° and 15°) LaAlO3 (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10° tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15° tilted substrate.  相似文献   

15.

Fatigue impairs the reliability of macroscopic metallic components utilized in a variety of technological applications. However, the fatigue behaviour of thin metal films and small-scale components used in microelectronics and mechanical microdevices has yet to be explored in detail. The fatigue behaviour in submicrometre thin films is likely to differ from that in bulk material, since the volume necessary for the formation of dislocation structures typical of cyclic deformation in bulk material is larger than that available in thin films. The thin-film dimensions and microstructure, therefore, affect the microscopic processes responsible for fatigue. The fatigue behaviour of Cu films 0.4, 0.8 and 3.0 µm thick on polyimide substrates was investigated. The specimens were fatigued at a total strain amplitude of 0.5% using an electromechanical tensile-testing machine. This work focuses on the characterization of fatigue mechanisms and the resulting fatigue damage of thin Cu films. Extrusions similar to those observed in bulk material were found at the film surfaces after cyclic loading. Voids observed beneath the extrusions, close to the film-substrate interface, contributed significantly to thin-film failure. Thinner films were more fatigue resistant and contained fewer and smaller extrusions than thicker films did. A small thickness appears to inhibit void nucleation. This observation is explained in terms of vacancy diffusion and annihilation at free surfaces or grain boundaries. Transmission electron microscopy investigations confirmed that no long-range dislocation structures have developed during fatigue loading of the films investigated.  相似文献   

16.

X-ray diffraction is frequently employed for the analysis of mechanical stresses in polycrystalline specimens. To this end, suitable so-called diffraction elastic constants are needed for determining the components of the mechanical stress tensor from measured lattice strains. These diffraction elastic constants depend on the single-crystal elastic constants of the material considered and the so-called grain interaction, describing the distribution of stresses and strains over the crystallographically differently oriented crystallites composing the specimen. Well-known grain interaction models, as due to Voigt, to Reuss, to Neerfeld and Hill and to Eshelby and Kröner, may be applied to bulk specimens, but they are generally not suitable for thin films. In this paper, an average 'effective' grain interaction model is proposed that consists of a linear combination of basic extreme models including new models specially suited to thin films. Experimental verification has been achieved by X-ray diffraction strain measurements performed on a sputter-deposited copper film. This is the first time that anisotropic grain interaction has been analysed quantitatively.  相似文献   

17.
Thin films of Cu2S on opaque gold layers and quartz substrates at the temperature of 393 K were deposited by a thermal evaporation technique. The surface morphology of the Cu2S thin films at different thicknesses is investigated by AFM. It is seen that all the films are composed of highly coordinated spherical nano-sized particles well adhered to the substrate. The transmittance and reflectance spectra of Cu2S thin films on the quartz substrate were recorded by a UV–visible spectrophotometer. The results show that the thermally evaporated Cu2S thin films have the characteristic transmittance and reflectance suitable for optoelectronic applications. The stoichiometry and surface morphology of a grown Cu2S thin film were confirmed by energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscopy (SEM), respectively. The dependence of the refractive index and the extinction coefficient on the photon energy for both the surface film and the opaque gold layer have been determined by ellipsometry. From the spectral behaviour of the absorption coefficient at two distinct absorption regions, a dual-band scheme of optical absorption for a Cu2S thin film is described. The indirect and direct edges of Cu2S are found to be about at 0.91 eV and 2.68 eV, respectively.  相似文献   

18.
Thin films of hydrogenated silicon were deposited on glass and single-crystalline silicon substrates using a capacitively coupled radio-frequency plasma-enhanced vapor-deposition system with the help of direct-current bias stimulation. Micro-Raman scattering was applied to investigate the microstructure of the thin films obtained. The crystalline volume fraction, X c, was obtained from the Raman spectra. Microscopic mechanical characterization of the thin films was carried out by nanoindentation based on the conventional depth-sensing indentation method. An analytical relation between X c and the elastic modulus was thereby established. The elastic modulus of the film on a glass substrate was found to be lower than that of the film on a monocrystalline silicon substrate with the same X c. The grain size of a phosphorus-doped thin film was smaller than that of the intrinsic one, with greater ordering of the grains and X c was found to be usually above 40%. A film with boron doping was on the opposite side, with X c usually below 40%. In the phosphorus-doped, intrinsic, and boron-doped films, the elastic moduli were lower when the X c values were 45%, 30%, and 15%, respectively.  相似文献   

19.
采用磁控溅射法在硅衬底上制备了LaCoO_3(LCO)薄膜,研究了退火温度对LCO薄膜组织结构、表面形貌及热电特性的影响,并利用X射线衍射仪、原子力显微镜(AFM)、激光导热仪等对LCO薄膜的晶体结构、表面形貌、热扩散系数等进行测量与表征.结果表明:退火温度对LCO薄膜的结晶度、晶粒尺寸和薄膜表面形貌都有较大影响;退火前后LCO薄膜的热扩散系数都随温度的升高而减小,且变化速率逐渐减缓; LCO薄膜的热扩散系数随退化温度的升高先增大后减小.LCO薄膜经过700℃退火后得到最佳的综合性能,其薄膜表面致密、平整,结晶质量最好,热扩散系数最小,热电性能最好.  相似文献   

20.
The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations d. The elastic interaction is repulsive and of quadrupolar type, varying as d-5. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d-5 as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号