首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane foam is currently used as an exudate absorptive wound dressing material. In this study silver (Ag) nanoparticles were incorporated into electrospun polyurethane (PU) nanofiber to enhance the antibacterial as well as wound healing properties. The electrospinning parameters were optimized for PU with and without silver nanoparticles. Silver nanoparticles were synthesized by aqueous and organic methods. The water absorption, antibacterial and cytocompatibility of the PU-Ag nanofibers were studied and compared to that of conventional PU foam. The results indicated that the PU-Ag nanofibers could be used for wound dressing applications.  相似文献   

2.
ABSTRACT: BACKGROUND: The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. RESULTS: The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. CONCLUSIONS: The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.  相似文献   

3.
Dillenia indica L. is a traditional medicinal plant well known for its ability to cure various human diseases. In the current study, silver nanoparticles have been synthesized by simple and eco-friendly method using Dillenia indica extract. The green synthesized nanoparticles were characterized by Fourier transform infrared (FTIR), UV–visible spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), Zeta Potential and Size Distribution. UV–visible and FTIR spectra, AFM, HR-TEM and Zeta Potential readings and size distribution conformed that the synthesized silver particles were in the size of nano. The green synthesized silver nanoparticles were subjected for antibacterial activity against Gram-positive bacteria Enterococcus faecalis and Gram-negative bacteria Escherichia coli by agar well diffusion method. The synthesized AgNPs exhibited significant inhibition of 27 and 16 mm against the test bacteria at 0.25 mg/ml. Further the antibacterial activity was confirmed by live and dead cell assay by fluorescence microscopy and morphological changes of bacteria were studied by Scanning electron microscope (SEM). The study recommends that the synthesized silver nanoparticles using Dillenia indica extract have potential application in inhibition of bacteria owing to their potent antibacterial activity.  相似文献   

4.
Poly(methyl methacrylate) (PMMA) nanofiber containing silver nanoparticles was synthesized by radical-mediated dispersion polymerization and applied to an antibacterial agent. UV-vis spectroscopic analysis indicated that the silver nanoparticles were continually released from the polymer nanofiber in aqueous solution. The antibacterial properties of silver/PMMA nanofiber against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were evaluated using minimum inhibitory concentration (MIC), the modified Kirby-Bauer method, and a kinetic test. The MIC test demonstrated that the silver/PMMA nanofiber had enhanced antimicrobial efficacy compared to that of silver sulfadiazine and silver nitrate at the same silver concentration.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):9139-9144
Silver nanoparticles (AgNPs) from silver nitrate solution are carried out using the flower extract of Calotropis gigantea. Silver nanoparticles were characterized by UV–vis spectrophotometer, X-Ray diffractometer (XRD). Reduction of silver ions in the aqueous solution of silver during the reaction was observed by UV–vis spectroscopy. Crystalline nature of synthesized silver nanoparticles was studied by XRD pattern, refraction peak using the Scherrer’s equation. Antibacterial activity of the silver nanoparticles was performed by disc diffusion method against Bacillus subtilis, Pseudomonas putida and Escherichia coli. The antibacterial activity of synthesized silver nanoparticles by flower extract of C. gigantea was found against B. subtilis (10 mm). Synthesised AgNPs has the efficient antibacterial activity against Gram positive bacteria.  相似文献   

6.
Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.  相似文献   

7.
Bacterial cellulose (BC), derived from kombucha scoby have extraordinary organoleptic properties suitable for development of leather-like materials. An improvement in physical and mechanical property is desirable for the practical applications. This work deals with the treatment of BC by incorporations of three different nanomaterials such as gold nanoparticles (AuNP), silver nanoparticles (AgNP) and graphene oxide (GO). Achieving combined benefits via synergic interactions of different nanomaterials is the major objective herein. While graphene oxide can influence some of the parameters related to mechanical properties, silver nanomaterials can offer antibacterial characteristics. Gold nano materials can bridge the BC/silver/graphene oxide as well as provide the desirable aesthetic colour. Different physical chemical and mechanical characteristics were studied in detail. For example, changes in morphology by imaging fiber network were studied using scanning electron microscopy. Fibre properties were studied by Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD). Elemental composition was studied by X-ray photoelectron spectroscopy (XPS) analysis and Raman analysis. The improvement of hydrophobicity was studied by Contact angle meter. Thermal analysis was performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A Picture was provided in ESI to show the modified material's leather-like appearances.  相似文献   

8.
The intension of current study was to determine antibacterial and drug releasing capacity of green synthesized silver nanoparticles (AgNps) with Moringa oleifera resin in the presence of Montelukast sodium and Ibuprofen. This plant gum is economic, easily available, biodegradable, safe and potential tablet binder. There was no significant study reported on the incorporation of green synthesized silver nanoparticle with plant resin in drug release. The aqueous extract of Clerodendron phlomoides was used for the bioreduction of silver nanoparticles as well as a capping agent. This green synthesized AgNps was observed in UV at 489 nm due to the SPR (Surface Plasmon Effect) effect, and the presence of protein and polyol compounds was identified by FTIR. The crystalline structure of AgNps was analyzed by XRD, elemental silver composition was measured by EDAX, morphological structure and size was revealed by SEM and TEM analysis. The antibacterial effect of green synthesized AgNps was analyzed by zone of inhibition method. Silver nanoparticles incorporated in M. oleifera plant resin and its functional groups and thermal degradation properties were characterized by FTIR and TGA, respectively. The drug release properties of the AgNps incorporated with plant resin were evaluated for the sustained release and compared with raw plant gum without AgNps consistency.  相似文献   

9.
The present work describes ceric ammonium nitrate (CAN) initiated graft copolymerization of acrylamide onto cellulose-based filter paper followed by entrapment of silver nanoparticles. The copolymerization was carried out in aqueous solution, containing 2 M acrylamide monomer and 16 mM N,N’-methylene bisacrylamide (MB) crosslinker. The optimum initiation time and grafting reaction temperature were found to be 15 min and 30 °C, respectively. The silver nanoparticles were loaded into grafted filter paper by equilibration in silver nitrate solution followed by citrate reduction. The formation of silver nanoparticles has been confirmed by TEM and SAED analysis. The novel nano silver loaded filter paper has been investigated for its antimicrobial properties against E.coli. This newly developed material shows strong antibacterial property and thus offers its candidature for possible use as antibacterial food-packaging material.  相似文献   

10.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   

11.
Antibacterial coatings based on hydrogen-bonded multilayers containing in situ synthesized Ag nanoparticles were created on planar surfaces and on magnetic colloidal particles. We report the antibacterial properties of these coatings, determined using a disk-diffusion (Kirby-Bauer) test, as a function of the film thickness and the concentration of Ag nanoparticles in the hydrogen-bonded multilayers. The zone of inhibition (ZoI) determined by the disk-diffusion test increases as the thickness of the multilayer film is increased. Results obtained for the values of the ZoI as a function of film thickness can be described adequately with a simple diffusion model (i.e., the square of the zone of inhibition (ZoI) depended linearly on the logarithm of the thickness of the silver-loaded films). This observation suggests that, in order to incrementally increase the ZoI, an exponentially increasing amount of Ag is required within the multilayers. In general, there was no statistically significant correlation between the zone of inhibition and the number of Ag loading and reduction cycles. The duration of sustained release of antibacterial Ag ions from these coatings, however, could be prolonged by increasing the total supply of zerovalent silver in the films via multiple loading and reduction cycles. These results indicate that the release of silver is controlled by an oxidation mechanism at the surface of the nanoparticles and that repeated loading and reduction of silver leads preferentially to growth of the existing silver nanoparticles in the film as opposed to nucleation of new Ag nanoparticles. We also show that magnetic microspheres coated with silver nanoparticle loaded hydrogen-bonded multilayer thin films can be used to deliver antibacterial agents to specific locations. The minimum inhibitory concentration (MIC) of nanocomposite coated microspheres was determined by the agar dilution technique: antibacterial magnetic microspheres with higher concentrations of Ag nanoparticles exhibited lower MIC values.  相似文献   

12.
Recently, researchers have investigated the therapeutical properties of metal nanoparticles especially silver nanoparticles in vitro and in vivo conditions. The aim of the experiment was green synthesis and chemical characterization of silver nanoparticles from aqueous extract of Pistacia atlantica leaf (Ag NPs) and evaluation of their cytotoxicity, antioxidant, and antibacterial effects under in vitro condition. Ag NPs were spherical with a size range of 40-60 nm and characterized using various analysis techniques including UV–Vis absorption spectroscopy to determine the presence of Ag NP in the solution. We studied functional groups of Pistacia atlantica extract in the reduction and capping process of Ag NP by FT-IR, crystallinity and FCC planes by XRD pattern, elemental analysis of the sample by EDS, and surface morphology, shapes, and size of Ag NPs by SEM, AFM, and TEM. Destroy initiation and termination temperatures of the Ag NPs were determined by TGA. DPPH free radical scavenging test was done to evaluate the antioxidant potentials, which indicated similar antioxidant potentials for Ag NPs and butylated hydroxytoluene. The synthesized Ag NPs had great cell viability dose-dependently and indicated this method was nontoxic. Agar diffusion tests were done to determine the antibacterial characteristic. Ag NPs revealed similar antibacterial property to the standard antibiotic. Also, Ag NPs prevented the growth of all bacteria at 1-7 μg/ml concentrations and removed them at 3-15 μg/ml concentrations. Finally, synthesized Ag NPs revealed non-cytotoxicity, antioxidant and antibacterial activities in a dose-depended manner.  相似文献   

13.
The silica–silver core–shell particles were synthesized by simple one pot chemical method and were employed on the cotton fabric as an antibacterial agent. Extremely small (1–2 nm) silver nanoparticles were attached on silica core particles of average 270 nm size. The optimum density of the nano silver particles was found which was sufficient to show good antibacterial activity as well as the suppression in their surface plasmon resonance responsible for the colour of the core–shell particle for antibacterial textile application. The change in the density and size of the particles in the shell were monitored and confirmed by direct evidence of their transmission electron micrographs and by studying surface plasmon resonance characteristics. The colony counting method of antibacterial activity testing showed excellent results and even the least silver containing core–shell particles showed 100% activity against bacterial concentration of 104 colony counting units (cfu). The bonding between core–shell particles and cotton fabric was examined by X-ray photoelectron spectroscopy. The antibacterial activity test confirmed the firm attachment of core–shell particles to the cotton fabric as a result 10 times washed sample was as good antibacterial as that of unwashed sample. The bacterial growth was inhibited on and beneath the coated fabric, at the same time no zone of inhibition which occurs due to the migration of silver ions into the medium was observed indicating immobilization of silver nanoparticles on silica and core–shell particles on fabric by strong bonding.  相似文献   

14.
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.  相似文献   

15.
Silver nanoparticles are of high importance due to their electrical, magnetic, and optical properties, as well as catalytic and biocidal activity that are superior to the bulk silver and other metals. To prepare certain devices, generally, silver is incorporated into a matrix either as preformed or in situ‐generated particles. Silver nanoparticles were generated in situ into a silicone matrix formed by cohydrolysis of the mixture of silanes, each of them having a certain role: dimethyldiethoxysilane (DMDES) as a precursor for highly flexible polydimethylsiloxane, methyltriethoxysilane (MTES) as a cross‐linker highly compatible with polydimethylsiloxane, and 3‐aminopropyltriethoxysilane as a stabilizer, since it can readily complex to silver atoms through its amine functionality. Dimethylformamide (DMF) was used as a solvent for the silver nitrate and reducing agent. The samples were investigated both in sol state and as aged coating films deposited on glass substrate. The complexation of the silver and the matrix formation were emphasized by FTIR. The size of the formed silicone particles encapsulating silver was estimated by dynamic light scattering (DLS) (about 100 nm) in sol and by AFM in film (about 90 nm). The formation of the clusters or nanoparticles depending on the ratio between the reducing and complexing agents was evidenced by UV–Vis absorption spectra. Thus, it would create conditions to stop and isolate clusters at the desired size by precise control of the experimental conditions. The composites could be used alone as antibacterial‐coating materials but also, porous silica having incorporated silver clusters with potential applicability in catalysis may result after their calcination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
应用柠檬酸钠还原法制得纳米银胶体溶液,并在钛基表面电泳沉积纳米银颗粒,再由电化学沉积法沉积羟基磷灰石涂层.X射线电子能谱(XPS)、X射线衍射(XRD)和高分辨透射电子显微镜(HRTEM/SEM)证实该涂层含羟基磷灰石(HAp)和Ag,其纳米银颗粒尺度为5~20 nm.抗菌试验表明,涂层中含银量随电泳沉积液纳米银粒子浓度升高而增加,抗菌性也相应增强.但如沉积液中银粒子超过一定浓度时,则其在钛表面会发生明显团聚,导致抗菌性能的降低.据此,初步优化了抗菌效果最佳的复合涂层制备技术.  相似文献   

17.
In this study, hydrogel-silver nanocomposites have been synthesized by a unique methodology, which involves formation of silver nanoparticles within swollen poly (acrylamide-co-acrylic acid) hydrogels. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and surface plasmon resonance (SPR) which was obtained at 406 nm. The TEM of hydrogel-silver nanocomposites showed almost uniform distribution of nanoparticles throughout the gel networks. Most of the particles, as revealed from the particle-size distribution curve, were 24-30 nm in size. The X-ray diffraction pattern also confirmed the face centered cubic (fcc) structure of silver nanoparticles. The nanocomposites demonstrated excellent antibacterial effects on Escherichia coli (E. coli). The antibacterial activity depended on size of the nanocomposites, amount of silver nanoparticles, and amount of monomer acid present within the hydrogel-silver nanocomposites. It was also found that immersion of plain hydrogel in 20 mg/30 ml AgNO(3) solution yielded nanocomparticle-hydrogel composites with optimum bactericidal activity.  相似文献   

18.
《Comptes Rendus Chimie》2015,18(5):586-592
Hybrid materials based on polyvinyl alcohol (PVA) and mercaptopropyltriethoxysilane (MPTES) with embedded silver nanoparticles (AgNps) have been synthesized via a sol–gel method. Silver nanoparticles were obtained via thermal reduction in the presence of PVA as a stabilizer and reducing agent. The formation of silver nanoparticles within the PVA/MPTES matrix was proven by FTIR, XRD, and TEM analysis. The antibacterial activity of PVA/AgNps/MPTES materials was determined against strains belonging to Gram-positive and Gram-negative bacteria by disk diffusion and growth curve methods. The hybrid materials showed high antibacterial activity, which depends on the concentration of the silver nanoparticles.  相似文献   

19.
The focus of the study is to compare the antibacterial efficacy of silver nanoparticles (AgNPs) fabricated by exploiting biological (a mangrove plant, Rhizophora apiculata) and chemical means (Glucose). The synthesized nanoparticles were characterised using UV-visible absorption spectrophotometry (UV-vis), Fourier transform Infra-red Spectroscopy (FTIR) and Transmission electron microscopy (TEM). Biologically synthesized silver nanoparticles (BAgNPs) were observed at 423 nm with particle sizes of 19-42 nm. The chemically synthesized silver nanoparticles (CAgNPs) showed a maximum peak at 422 nm with particle sizes of 13-19 nm. An obvious superiority of the antibacterial potency of BAgNPs compared to the CAgNPs as denoted by the zone of inhibition (ZoI) was noted when the nanoparticles were treated against seven different Microbial Type Culture Collection (MTCC) strains. The current study therefore elucidates that the synthesized AgNPs were efficient against the bacterial strains tested.  相似文献   

20.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号