首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Because ammonia is one of the most promising candidates for energy carrier in the future, various applications of ammonia as a fuel are currently considered. One medium for utilizing ammonia is by introducing it to coal-fired boilers. To the best of our knowledge, this paper is the first to report the fundamental mechanism of the flame propagation phenomenon for pulverized coal/ammonia co-combustion. The effects of the equivalence ratio of the ammonia-oxidizer mixture on the flame propagation velocity of pulverized coal/ammonia co-combustion in turbulent fields were clarified by the experiments employing a unique fan-stirred constant volume chamber. The flame propagation velocities of pulverized coal/ammonia co-combustion, pure ammonia combustion, and pure pulverized coal combustion were compared. As expected, the flame propagation velocity of pulverized coal/ammonia was higher than that of the pure pulverized coal combustion for all conditions. However, the comparison of the flame propagation velocities of pulverized coal/ammonia co-combustion and that of the pure ammonia combustion, revealed that whether the flame propagation of the pulverized coal/ammonia was higher than that of the pure ammonia combustion was dependent on the equivalence ratio of the ammonia-oxidizer. This unique feature was explained by a mechanism including three competing effects proposed by the authors. In the ammonia lean condition, the positive effects, which are the strong radiation from the luminous flame and the increment of local equivalence ratio by the addition of volatile matter, are larger than the negative effect, which is the heat absorption by coal particles in preheat zone. In the ammonia rich condition, the effect of an increment of the local equivalence ratio by the addition of volatile matter turns into a negative effect. Consequently, the negative effects overcome the positive effect in the ammonia rich condition resulting in a lower flame propagation velocity of pulverized coal/ammonia co-combustion.  相似文献   

2.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

3.
Ammonia is a highly promising energy carrier for achieving a carbon-neutral society. The co-combustion of solid particle clouds–ammonia, in particular, is considered an efficient and feasible method of reducing carbon dioxide emissions. Understanding turbulent flame stabilization and extinguishment processes during the two-phase hybrid-mixture co-combustion of solid particle clouds–ammonia is essential for the co-combustion technology to be used in combustors. To the best of our knowledge, this is the first study to describe the turbulent flame propagation limits and associated mechanism on the co-combustion of solid particle clouds–ammonia–air. Turbulent flame propagation experiments on silica particle clouds–ammonia–air mixing combustion and polymethylmethacrylate (PMMA) particle cloud–ammonia–air co-combustion were conducted in this work using a novel fan-stirred constant-volume vessel to clarify the turbulent flame propagation limits and associate mechanism of solid particle cloud–ammonia–air co-combustion. Results showed that adding inert silica particles contracted the turbulent flame propagation limits of premixed ammonia–air mixtures. However, adding PMMA particles expanded and then contracted the turbulent flame propagation limits of a premixed ammonia–air mixture as the ammonia equivalence ratio increased from lean to rich. In the solid particle cloud–ammonia–air co-combustion, reactive particles induce two types of effects on the turbulent flame propagation limits of premixed ammonia–air mixtures: The local equivalence ratio increment effect is caused by adding volatile matter from preheated particles in the preheat zone of the flame front, and the heat sink negative effect is induced by the unburned particles.  相似文献   

4.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

5.
Ammonia is one of promising energy carriers that can be directly used as carbon-neutral fuel for combustion applications. However, because of the low-burning velocity of ammonia, it is challenging to introduce ammonia to practical combustors those are designed for general hydrocarbon fuels. One of ways to enhance the combustibility of ammonia is by mixing it with other hydrocarbon fuels, such as methane, with a burning velocity is much higher than the burning velocity of ammonia. In this study, we conducted flame propagation experiments of ammonia/methane/air using a fan-stirred constant volume vessel to clarify the effect of methane addition to ammonia on the turbulent flame propagation limit. From experimental results, we constructed the flame propagation maps and clarified the flame propagation limits. The results show that the flame propagation limits were extended with an increase in mixing a fraction of methane to ammonia. Additionally, ammonia/methane/air mixtures with the equivalence ration of 0.9 can propagate at the highest turbulent intensity, even though the peak of the laminar burning velocity is the fuel-rich side because of the diffusional-thermal instability of the flame surface. Furthermore, the Markstein number of the mixture obtained in this research successfully expressed the strength of the diffusional-thermal instability effect on the flame propagation capability. The turbulence Karlovitz number at the flame propagation limit monotonically increases with the decreasing Markstein number.  相似文献   

6.
Experimental studies of aerosol combustion under quiescent and turbulence conditions have been conducted to quantify the differences in the flame structure and burning rates between aerosol and gaseous mixtures. Turbulence was generated by variable speed fans to yield rms turbulence velocities between 0.5 and 4.0 m/s and this was uniform and isotropic. Homogeneously distributed and near monodispersed iso-octane-air aerosol clouds were generated using a thermodynamic condensation method. Spherically expanding flames, following central ignition, at near atmospheric pressures were employed to quantify the flame structure and propagation rate. The effects of the diameter of fine fuel droplets on flame propagation were investigated. It is suggested that the inertia of fuel droplets is an important cause of flame enhancement during early flame development. During later stages, cellular flame instability and the effective, gaseous phase, equivalence ratio becomes important. The latter effect leads has increases the flame speed of rich mixtures, but decreases that of lean ones. Droplet enhancement of burning velocity can be significant at low turbulence but is negligible at high turbulence.  相似文献   

7.
稀甲烷/氢气预混湍流传播火焰实验研究   总被引:1,自引:0,他引:1  
本文采用定容湍流燃烧弹获取了稀甲烷/氢气/空气在强湍流条件下的火焰发展历程,研究了湍流火焰在负马克斯坦数条件下的传播特性.结果表明,湍流火焰呈现自相似传播特性,即使在强湍流条件下,湍流传播火焰仍然会受到不稳定性的影响.并且随着马克斯坦数的减小,不稳定性对湍流传播火焰的影响增强。同时,本文获得一种新的湍流燃烧速度拟合公式,包含了负马克斯坦数条件下不稳定性对湍流燃烧速度的影响。  相似文献   

8.
Utilizing ammonia as a co-firing fuel to replace amounts of fossil fuel seems a feasible solution to reduce carbon emissions in existing pulverized coal-fired power plants. However, there are some problems needed to be considered when treating ammonia as a fuel, such as low flame stability, low combustion efficiency, and high NOx emission. In this study, the co-firing characteristics of ammonia with pulverized coal are studied in a drop tube furnace with staged combustion strategy. Results showed that staged combustion would play a key role in reducing NOx emissions by reducing the production of char-NOx and fuel(NH3)-NOx simultaneously. Furthermore, the effects of different ammonia co-firing methods on the flue gas properties and unburned carbon contents were compared to achieve both efficient combustion and low NOx emission. It was found that when ammonia was injected into 300 mm downstream under the condition of 20% co-firing, lower NOx emission and unburnt carbon content than those of pure coal combustion can be achieved. This is probably caused by a combined effect of a high local equivalence ratio of NH3/air and the prominent denitration effect of NH3 in the vicinity of the NH3 downstream injection location. In addition, NOx emissions can be kept at approximately the same level as coal combustion when the co-firing ratio is below 30%. And the influence of reaction temperature on NOx emissions is closely associated with the denitration efficiency of the NH3. Almost no ammonia slip has been detected for any injection methods and co-firing ratio in the studied conditions. Thus, it can be confirmed that ammonia can be used as an alternative fuel to realize CO2 reduction without extensive retrofitting works. And the NOx emission can be reduced by producing a locally NH3 flame zone with a high equivalence ratio as well as ensuring adequate residence time.  相似文献   

9.
Recent studies have demonstrated stable generation of power from pure ammonia combustion in a micro gas turbine (MGT) with a high combustion efficiency, thus overcoming some of the challenges that discouraged such applications of ammonia in the past. However, achievement of low NOx emission from ammonia combustors remains an important challenge. In this study, combustion techniques and combustor design for efficient combustion and low NOx emission from an ammonia MGT swirl combustor are proposed. The effects of fuel injection angle, combustor inlet temperature, equivalence ratio, and ambient pressure on flame stabilization and emissions were investigated in a laboratory high pressure combustion chamber. An FTIR gas analyser was employed in analysing the exhaust gases. Numerical modeling using OpenFOAM was done to better understand the dependence of NO emissions on the equivalence ratio. The result show that inclined fuel injection as opposed to vertical injection along the combustor central axis resulted to improved flame stability, and lower NH3 and NOx emissions. Numerical and experimental results showed that a control of the equivalence ratio upstream of the combustor is critical for low NOx emission in a rich-lean ammonia combustor. NO emission had a minimum value at an upstream equivalence ratio of 1.10 in the experiments. Furthermore, NO emission was found to decrease with ambient pressure, especially for premixed combustion. For the rich-lean combustion strategy employed in this study, lower NOx emission was recorded in premixed combustion than in non-premixed combustion indicating the importance of mixture uniformity for low NOx emission from ammonia combustion. A prototype liner developed to enhance the control and uniformity of the equivalence ratio upstream of the combustor further improved ammonia combustion. With the proposed liner design, NOx emission of 42?ppmv and ammonia combustion efficiency of 99.5% were achieved at 0.3?MPa for fuel input power of 31.44?kW.  相似文献   

10.
Combustion experiments of fuel droplet array in fuel vapor-air mixture were performed at microgravities to investigate growth mechanism of group combustion of fuel droplets. A 10-droplet array was inserted into the test section filled with a saturated fuel vapor-air mixture as a simple model of prevaporized sprays. Gas equivalence ratio of the fuel vapor-air mixture was regulated by the test section temperature. n-Decane droplets of 0.8 mm in the initial diameter were suspended at the crossing points of 10 sets of X-shaped suspenders. The first droplet was ignited by a hot wire to initiate flame spread along a fuel droplet array. Flame spread speed was obtained from the history of the leading edge position of a spreading flame. Effects of droplet spacing and gas equivalence ratio on the flame spreading behavior and the flame spread speed were examined. The droplet spacing and the gas equivalence ratio were varied from 1.6 to 10.2 mm and from 0.2 to 0.7, respectively. The gas equivalence ratio has little effect on the relationship between the flame spreading behavior and the droplet spacing. The flame spread speed increases as the increase in the gas equivalence ratio at all droplet spacings. The influence of the gas equivalence ratio on the flame spread speed becomes strong as the increase in the droplet spacings. The flame spread speed increases as the increase in the droplet spacing, and then decreases. The maximum flame spread speed appears in the range from 2.4 to 3 mm at all gas equivalence ratios.  相似文献   

11.
An experimental study on lean turbulent premixed methane–air flames at high pressure is conducted by using a turbulent Bunsen flame configuration. A single equivalence ratio flame at Φ = 0.6 is explored for pressures ranging from atmospheric pressure to 0.9 MPa. LDA measurements of the cold flow indicate that turbulence intensities and the integral length scale are not sensitive to pressure. Due to the decreased kinematic viscosity with increasing pressure, the turbulent Reynolds numbers increase, and isotropic turbulence scaling relations indicate a large decrease of the smallest turbulence scales. Available experimental results and PREMIX code computations indicate a decrease in laminar flame propagation velocities with increasing pressure, essentially between the atmospheric pressure and 0.5 MPa. The u′/SL ratio increases therefore accordingly. Instantaneous flame images are obtained by Mie scattering tomography. The images and their analysis show that pressure increase generates small scale flame structures. In an attempt to generalize these results, the variance of the flamelet curvatures, the standard deviation of the flamelet orientation angle, and the flamelet crossing lengths have been plotted against which is proportional to the ratio between the integral and Taylor length scales, and which increases with pressure. These three parameters vary linearly with the ratio between large and small turbulence scales and clearly indicate the strong effect of this parameter on premixed turbulent flame dynamics and structure. An obvious consequence is the increase in flame surface density and hence burning rate with pressure, as confirmed by its direct determination from 2D tomographic images.  相似文献   

12.
We investigate the role played by hydrodynamic instability in the wrinkled flamelet regime of turbulent combustion, where the intensity of turbulence is small compared to the laminar flame speed and the scale large compared to the flame thickness. To this end the Michelson–Sivashinsky (MS) equation for flame front propagation in one and two spatial dimensions is studied in the presence of uncorrelated and correlated noise representing a turbulent flow field. The combined effect of turbulence intensity, integral scale, and an instability parameter related to the Markstein length are examined and turbulent propagation speed monitored for both stable planar flames and corrugated flames for which the planar conformation is unstable. For planar flames a particularly simple scaling law emerges, involving quadratic dependence on intensity and a linear dependence on the degree of instability. For corrugated flames we find the dependence on intensity to be substantially weaker than quadratic, revealing that corrugated flames are more resilient to turbulence than planar flames. The existence of a threshold turbulence intensity is also observed, below which the corrugated flame in the presence of turbulence behaves like a laminar flame. We also analyze the conformation of the flame surface in the presence of turbulence, revealing primary, large-scale wrinkles of a size comparable to the main corrugation. When the integral scale is much smaller than the characteristic corrugation length we observe, in addition to primary wrinkles, secondary small-scale wrinkles contaminating the surface. The flame then acquires a multi-scale, self-similar conformation, with a fractal dimension, for one-dimensional flames, plateauing at 1.23 for large intensities. The existence of an intermediate integral scale is also found at which the turbulent speed is maximized. When two-dimensional flames are subject to turbulence, the primary wrinkling patterns give rise to polyhedral-cellular structures which bear a very close resemblance to those observed in experiments on hydrodynamically unstable expanding spherical flames.  相似文献   

13.
Direct Numerical Simulations of expanding flame kernels following localized ignition in decaying turbulence with the fuel in the form of a fine mist have been performed to identify the effects of the spray parameters on the possibility of self-sustained combustion. Simulations show that the flame kernel may quench due to fuel starvation in the gaseous phase if the droplets are large or if their number is insufficient to result in significant heat release to allow for self-sustained flame propagation for the given turbulent environment. The reaction proceeds in a large range of equivalence ratios due to the random location of the droplets relative to the igniter location that causes a wide range of mixture fractions to develop through pre-evaporation in the unreacted gas and through evaporation in the preheat zone of the propagating flame. The resulting flame exhibits both premixed and non-premixed characteristics.  相似文献   

14.
Combustion experiments on fuel droplet–vapor–air mixtures have been performed with a rapid expansion apparatus which generates monodispersed droplet clouds with narrow diameter distribution using the condensation method. The effects of fine fuel droplets on flame propagation were investigated for ethanol droplet–vapor–air mixtures at various pressures from 0.2 to 1.0 MPa. A stagnant fuel droplet–vapor–air mixture, generated in a rapid expansion chamber, was ignited at the center of the chamber using an ignition wire. Spherical flame propagation under constant-pressure conditions was observed with a high-speed video camera and flame speed was measured. Total equivalence ratio, and the ratio of liquid fuel mass to total fuel mass, was varied from 0.6 to 1.4 and from zero to 56%, respectively. The mean droplet diameter of fuel droplet–vapor–air mixtures was set at 8.5 and 11 μm. It was found that the flame speed of droplet–vapor–air mixtures less than 0.9 in the total equivalence ratio exceeds that of premixed gases of the same total equivalence ratio at all pressures. The flame speed of fuel droplet–vapor–air mixtures decreases as the pressure increases in all total equivalence ratios. At large ratios of liquid fuel mass to total fuel mass, the normalized flame speed (the flame speed of droplet–vapor–air mixtures divided by the flame speed of the premixed gas with the same total equivalence ratio), increases with the increase in pressure for fuel-lean mixtures, and it decreases for fuel-rich mixtures. The outcome is reversed at small ratios of liquid fuel mass to total fuel mass; the normalized flame speed decreases with the increase in pressure for fuel-lean mixtures, and increases for fuel-rich mixtures. The results suggest that the increase in pressure promotes droplet evaporation in the preheat zone.  相似文献   

15.
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane–air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. ‘Back supported’ lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.  相似文献   

16.
The initial propagation processes of expanding spherical flames of CH4/N2/O2/He mixtures at different ignition energies were investigated experimentally and numerically to reduce the effect of ignition energy on the accurate determination of laminar flame speeds. The experiments were conducted in a constant-volume combustion bomb at initial pressures of 0.07???0.7?MPa, initial temperatures of 298???398?K, and equivalence ratios of 0.9???1.3 with various Lewis numbers. The A-SURF program was employed to simulate the corresponding flame propagation processes. The results show that elevating the ignition energy increases the initial flame propagation speed and expands the range of flame trajectory which is affected by ignition energy, but the increase rates of the speed and range decrease with the ignition energy. Based on the trend of the minimum flame propagation speed during the initial period with the ignition energy, the minimum reliable ignition energy (MRIE) is derived by considering the initial flame propagation speed and energy conservation. It is observed that MRIE first decreases and then increases with the increasing equivalence ratio and monotonously decreases with increasing initial pressure and temperature. As the Lewis number rises, MRIE increases. The results also suggest that during the data processing of the spherical flame experiment, the accuracy of determination of laminar flame speeds can be enhanced when taking the flame radius influenced by MRIE as the lower limit of the flame radius range. Then the flame radius influenced by MRIE was defined as RFR. It can also be found that there exist nonlinear relationships between RFR and the equivalence ratio and Lewis number, and the RFR decreases with increasing initial pressure and temperature.  相似文献   

17.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

18.
Ammonia combustion appears as a meaningful way to retrieve stored amounts of excess variable renewable energy, and the spark-ignition (SI) engine has been proposed as a practical conversion system. The present work aims at elucidating the combustion characteristics of ammonia blends in engine-relevant turbulent conditions. To that end, laminar and turbulent flame experiments were conducted in a constant-volume vessel at engine-relevant conditions of 445 K and 0.54 MPa to assess the combustion behavior of ammonia/hydrogen/air, ammonia/methane/air and methane/hydrogen/air mixtures observed in an all-metal single-cylinder SI engine. Results show that the respective accelerating or decelerating effects of hydrogen or methane enrichment observed in the SI engine could not be sufficiently explained by the measured laminar burning velocities of the mixtures. Since the latter are very low, the studied combustion regimes are at the boundary between the thin and broken reaction zones regimes, and thus strongly influenced by flame-turbulence interactions. The quantification of the flame response to turbulence shows much higher effects for ammonia blends, than for methane-based fuels. The aforementioned opposite effects of ammonia enrichment with hydrogen or methane are observed on the turbulent burning velocity during the turbulent flame experiments and correlated to the thermochemical properties of the reactants and the flame sensitivity to stretch. The latter may explain an unexpected bending effect on the turbulent-to-laminar velocity ratio when increasing the hydrogen fraction in the ammonia/hydrogen blend. Nevertheless, a very good correlation of the turbulent velocity was found with the Karlovitz and Damköhler numbers, that suggests that ammonia combustion in SI engines may be described following the usual turbulent combustion models. This encourages further investigations on ammonia combustion for the optimization of practical systems, by means of dedicated experiments and numerical simulations.  相似文献   

19.
As one of the longest lasting species in plasma-assisted combustion, ozone has a pronounced effect on ignition and flame propagation. Many previous studies, however, have only investigated the combustion enhancement by ozone for single-component fuels. In the present study, the impact of ozone addition on multi-component fuel mixtures is examined through one-dimensional laminar flame simulations across a range of temperatures, pressures, residence times, and mixture compositions. Due to the presence of an alkene (ethylene), ozone is consumed through pre-flame ozonolysis reactions even at room temperature. The flame speed is shown to be dependent on the domain length (residence time), and a new reference flame speed is defined for ozonolysis-assisted flame propagation. It is also found that the flame speed enhancement by ozone is highly nonlinear, as a small amount of ethylene produces a disproportionate boost in the laminar flame speed. Finally, the competition between ozonolysis, ozone decomposition, and other ozone reactions in a mixture of alkenes and alkanes is examined in detail. Increases in the pressure, temperature, and equivalence ratio (for rich mixtures) favor ozonolysis reactions over other ozone reactions. The results of this study provide important insights into the timescales, length scales, and reaction pathways that govern ozone-assisted combustion of multi-component fuels in real combustors.  相似文献   

20.
Various experiments were conducted to study the combustion characteristics of partially premixed methane enrichment of syngas by using the OH-PLIF technique. Experiments were conducted on a co-flow burner, and the methane concentration (XCH4 = CH4/(H2+CO+CH4)) was varied from 0 to 20%, the overall equivalence ratio was varied from 0.4 to 1.2 and the inner equivalence ratio was varied from 1.5 to 3.5. Kinetic simulation was conducted by using OPPDIF module of CHEMKIN-Pro software. Results show that an increase in XCH4 and ?overall weakens the OH signal intensity. Adding methane into the fuel greatly increases the height of the inner flame front, and the increase of methane concentration has a negative effect on flame propagation speed. Meanwhile, simulation results remain consistent with the experiments. The main OH radical production reaction changes from R46: H+HO2 = 2OH to R38: H+O2 = O+OH when methane concentration contained in the fuel mixture increases. Sensitivity analysis also indicates that reaction which plays a dominant effect on temperature changes with the increase of methane concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号