首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 393 毫秒
1.
对RLW-KdV方程提出一种新的四阶精度紧致有限差分格式.用离散能量法证明差分格式的能量守恒性、可解性、收敛性和稳定性.在离散L~∞-范数下,所建格式在空间上四阶收敛且在时间上二阶收敛.通过两个数值算例验证了该格式的有效性和可靠性.  相似文献   

2.
对广义Rosenau-KdV方程提出一种在时间层和空间层上分别具有二阶和四阶精度的三层线性差分格式,所建格式是离散质量守恒和离散能量守恒的,利用离散能量法证明了差分格式的可解性、收敛性和稳定性.数值实验验证了该格式的精度和守恒性.  相似文献   

3.
提出了求解三维抛物型方程的一个高精度显式差分格式.首先,推导了一个特殊节点处一阶偏导数(■u)/(■/t)的一个差分近似表达式,利用待定系数法构造了一个显式差分格式,通过选取适当的参数使格式的截断误差在空间层上达到了四阶精度和在时间层上达到了三阶精度.然后,利用Fourier分析法证明了当r1/6时,差分格式是稳定的.最后,通过数值试验比较了差分格式的解与精确解的区别,结果说明了差分格式的有效性.  相似文献   

4.
基于紧致差分方法,推导出一个时间和空间方向均为四阶精度的三层隐式紧致格式,并采用Fourier分析法给出了格式的稳定性条件.最后,数值例子验证了所给出来的格式的精度和可靠性.  相似文献   

5.
以四阶CWENO重构为基础,通过将对流项采用低耗散中心迎风格式离散,扩散项采用四阶中心差分格式离散,对得到的半离散格式采用四阶龙格库塔方法在时间方向上推进,得到一种求解对流扩散方程的高阶有限差分格式.数值结果验证了该格式的四阶精度和基本无振荡特性.  相似文献   

6.
针对三维非稳态对流扩散反应方程,构造了一种高精度紧致有限差分格式,对空间的离散采用四阶紧致差分方法,对时间的离散采用Taylor级数展开和余项修正技术,所提格式在时间上的精度为二阶、在空间上的精度为四阶。利用Fourier稳定性分析法证明了该格式是无条件稳定的。最后给出数值算例验证了理论结果。  相似文献   

7.
针对四阶抛物型方程周期初值问题,提出了一个两层隐式差分格式和一个三层隐式差分格式.它们的局部截断误差分别为O((Δt)2+(Δx)4)和O((Δt)2+(Δt)(Δx)2+(Δx)4),其中Δt,Δx分别为时间步长和空间步长.误差分析和数值实验均表明,本文构造的差分格式比经典的Crank-Nicolson格式和Saul’ev构造的差分格式精度更高.从精度及稳定性方面考虑,本文构造的格式也比文[5]的显式格式要好.  相似文献   

8.
基于复化Simpson公式和复化两点Gauss-Legendre公式,构造了两个求解时间分布阶扩散方程的高阶有限差分格式.不同于以往文献中提出的时间一阶或二阶格式,这两种格式在时间方向都具有三阶精度,而在分布阶和空间方向可达到四阶精度.数值结果表明,两种算法都是稳定且收敛的,从而是有效的.两种格式的收敛速率也通过数值实验进行了验证,并且通过和文献中的算法对比可以得出其更为高效,  相似文献   

9.
首先,针对空间二阶导数,提出了一种五点六阶差分公式.然后,针对一维非线性反应扩散方程,空间导数项采用该差分公式离散,时间导数项采用Crank-Nicolson方法进行离散,再利用Richardson外推方法将时间精度提高到四阶,提出了一种时间四阶空间六阶精度的有限差分格式.由于每一个时间层上所形成的线性方程组是五对角形的,因此采用五对角追赶法进行计算,计算简单且高效.最后通过数值实验验证了格式的精确性和可靠性.  相似文献   

10.
对一维Neumann边界条件的线性双曲方程,利用有限差分方法建立高阶差分格式.由方程和边界条件得到在空间边界点的三阶和五阶导数值,进而分别在内点和边界点建立三点和两点紧差分格式,其截断误差关于时间和空间分别为二阶和四阶;利用离散的能量估计方法,分析差分格式的收敛性和稳定性;通过数值算例,验证理论分析结果.  相似文献   

11.
In this paper, we extend our previous work (M.-C. Lai, A simple compact fourth-order Poisson solver on polar geometry, J. Comput. Phys. 182 (2002) 337–345) to 3D cases. More precisely, we present a spectral/finite difference scheme for Poisson equation in cylindrical coordinates. The scheme relies on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are solved by a formally fourth-order accurate compact difference discretization. Here the formal fourth-order accuracy means that the scheme is exactly fourth-order accurate while the poles are excluded and is third-order accurate otherwise. Despite the degradation of one order of accuracy due to the presence of poles, the scheme handles the poles naturally; thus, no pole condition is needed. The resulting linear system is then solved by the Bi-CGSTAB method with the preconditioner arising from the second-order discretization which shows the scalability with the problem size.  相似文献   

12.
In this work, we present an implicit compact difference scheme for solving a class of neutral delay parabolic differential equations (NDPDEs). The unique solvability and unconditional stability of the scheme are proved. The temporal accuracy of the scheme is improved by using different Richardson extrapolation techniques for linear and nonlinear problems, and fourth-order accuracy in both temporal and spatial dimensions is obtained. Finally, numerical experiments are conducted to verify the accuracy and efficiency of the algorithms.  相似文献   

13.
In this paper, we have developed a fourth-order compact finite difference scheme for solving the convection-diffusion equation with Neumann boundary conditions. Firstly, we apply the compact finite difference scheme of fourth-order to discrete spatial derivatives at the interior points. Then, we present a new compact finite difference scheme for the boundary points, which is also fourth-order accurate. Finally, we use a Padé approximation method for the resulting linear system of ordinary differential equations. The presented scheme has fifth-order accuracy in the time direction and fourth-order accuracy in the space direction. It is shown through analysis that the scheme is unconditionally stable. Numerical results show that the compact finite difference scheme gives an efficient method for solving the convection-diffusion equations with Neumann boundary conditions.  相似文献   

14.
In this paper, a high-order exponential (HOE) scheme is developed for the solution of the unsteady one-dimensional convection-diffusion equation. The present scheme uses the fourth-order compact exponential difference formula for the spatial discretization and the (2,2) Padé approximation for the temporal discretization. The proposed scheme achieves fourth-order accuracy in temporal and spatial variables and is unconditionally stable. Numerical experiments are carried out to demonstrate its accuracy and to compare it with analytic solutions and numerical results established by other methods in the literature. The results show that the present scheme gives highly accurate solutions for all test examples and can get excellent solutions for convection dominated problems.  相似文献   

15.
In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

16.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

17.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

18.
In this paper, a high-order and fast numerical method is investigated for the time-fractional Black-Scholes equation. In order to deal with the typical weak initial singularity of the solution, we construct a finite difference scheme with variable time steps, where the fractional derivative is approximated by the nonuniform Alikhanov formula and the sum-of-exponentials (SOE) technique. In the spatial direction, an average approximation with fourth-order accuracy is employed. The stability and the convergence with second order in time and fourth order in space of the proposed scheme are religiously derived by the energy method. Numerical examples are given to demonstrate the theoretical statement.  相似文献   

19.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号