首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The polarization of indole fluorescence on excitation in the P, Q, and R branches of a purely electron transition has been investigated. Relations are given to calculate the fluorescence polarization with arbitrary orientation of the dipole moments of transitions with absorption and emission and with excitation in the Q branch of the vibronic line. The coincidence of the measured (7.3%) and calculated (7.7%) values of the polarization degree confirms the reported intramolecular orientation of the dipole moment of transition. The measured fluorescence polarization degree on nonselective excitation is about 3%.  相似文献   

2.
Poly(styrene) is a highly viscous, and cross-linked polymer at room temperature. This makes it ideal to use as a molecular fixer. The polarized fluorescence of a diphenylhexatriene (DPH)-incorporated poly(styrene) film has been studied. The excitation and emission wavelength dependence of the anisotropy of fluorescence of a luminophore-incorporated poly(styrene) film reveals that with decreasing excitation wavelength the anisotropy changes remarkably but is independent of emission wavelength. The investigation estimates an angle of no more than 7.4° between the absorption and the emission transition dipole moment for DPH, suggesting poly(styrene) as a suitable medium to evaluate the mutual orientation of absorption and the emission transition dipole moments at room temperature.  相似文献   

3.
The steady-state fluorescence anisotropy of 5-methylindole is shown to depend on both excitation and emission wavelengths, at room temperature in glycerol. A simulation is presented that shows that this emission wavelength dependence of the anisotropy can be explained in terms of dual emission from both the La and the Lb transition moments of the indole ring. For such dual emission to occur, the lowest excited-state energy level of both of these oscillators must be very similar.  相似文献   

4.
本文分别在室温和低温下测定了氟磷酸盐玻璃中用不同波长激发Cu~+的分时荧光光谱以及不同发光波长的荧光寿命.随延迟时间增加,发光峰值移向长波.当采用长波长激发时,在发光主峰两边出现多个子峰结构,展现了激活离子之间的能量转移.  相似文献   

5.
Absorption, excitation and fluorescence spectra of T1+ doped cesium bromide have been investigated at various thallium concentrations. At very low thallium concentration two absorption bands are obtained at 225 nm and 264 nm. With rise of thallium concentration additional absorption bands are obtained at 230, 244, 258, 270 and 285 nm. A single bell-shaped fluorescence band at 357 nm in the ultraviolet region is obtained at low thallium concentration. Two additional visible fluorescence bands appear at 440 and 540 nm with rise in thallium content. The excitation spectra for ultraviolet emission band and visible emission bands are found to be different. Accordingly the ultraviolet emission band is attributed to the characteristic A emission in T1+ ion and the visible bands are attributed to dimer centers havingD 4h site symmetry.  相似文献   

6.
We examined the steady-state and time-resolved emission of liver alcohol dehydrogenase resulting from one-photon and two-photon excitation. Previous studies with one-photon excitation revealed that the two nonidentical tryptophan residues display different emission spectra and decay times. The use of two-photon excitation resulted in similar emission spectra, multiexponential intensity decays, time-resolved emission spectra, and anisotropy decays as was observed for one-photon excitation. These results suggest that both nonidentical tryptophan residues are excited to a similar extent for one- and two-photon excitation. However, the limiting anisotropy (r 0) with two-photon excitation from 585 to 610 nm is below 0.1 and appears distinct from that observed previously forN-acetyl-l-tryptophanamide.Abbreviations LADH liver alcohol dehydrogenase - -NAD+ -nicotinamide adenine dinucleotide - OPE one-photon excitation - OPIF one-photon induced fluorescence - TPE two-photon excitation - TCSPC time-correlated single photon counting - TPIF two-photon induced fluorescence  相似文献   

7.
The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25–50°C), various concentrations of NaCl (0–250 mM), methyl viologen (MV, 0–25 μM), SDS (0–1.0%) and NaHSO3 (0–80 μM). Fluorescence emission spectrum of leaves at wavelength regions of 500–800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO2 (NaHSO3) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F685 and F731 depended on the individual treatment. Increase in temperature and concentration of NaHSO3 enhanced fluorescence intensity mainly at F685, while an increase in MV concentration led to a decrease at both F685 and F731. On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO3 treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.  相似文献   

8.
Polarized absorption (at 296 and 85 K), fluorescence, and photoacoustic (at 296 and 85 K) spectra of antenna complexes—phycobilisomes isolated from cyanobacteriaTolypothrix tenuis andOscillatoria and embedded in isotropic and anisotropic polyvinyl alcohol films—were measured. From the sets of polarized components of emission, the anisotropy of fluorescence for the pools of differently oriented molecules was calculated. On the basis of polarized photoacoustic and emission spectra, the competition between the process of thermal deactivation of excitation and excitation energy transfer in a chain of excitation donor and acceptor chromophores of phycobilisomes is discussed.  相似文献   

9.
The fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate bound toLens culinaris agglutinin and of the Trp residues of the protein was investigated. Red-edge excitation spectra and steady-state anisotropy as a function of temperature indicate that the TNS is bound rigidly. Red-edge excitation spectra, steady-state anisotropy as a function of sucrose and anisotropy decay experiments performed on Trp residues fluorescence prove that the internal fluorophore presents residual motion independent of the global rotation of the protein. Fluorescence anisotropy decay allows to calculate the rotational correlation time (351 ps) of this local motion. Quenching resolved emission anisotropy with iodide gives values equal to 0.257 and 0.112 for the anisotropies of the buried and the surface Trp residues, respectively. This result indicates that the Trp residues present at the surface of the protein have important local motions compared to those embedded in the protein matrix. The results obtained from TNS and Trp residues indicate that the agglutinin has different dynamic domains.  相似文献   

10.
Low temperature emission spectra of localized excitons in CdS1?xSex solid solutions under the monochromatic excitation with tunable laser have been studied. It has been found that the luminescence of localized excitons has a high degree of linear polarization with respect to the polarization direction of exciting light. This polarization reflects the “hidden” anisotropy of macroscopically isotropic localized exciton system and strongly depends on the frequency of exciting light. Study of this dependence has permitted for the first time a determination of position of the “mobility edge” for exciton migration in disordered semiconductor solid solution.  相似文献   

11.
Standard Reference Material® (SRM®) 2941 is a cuvette-shaped, uranyl-ion-doped glass, recommended for use for relative spectral correction of emission and day-to-day performance validation of fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum have been explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy, temperature coefficient of fluorescence intensity, and fluorescence lifetimes. The expanded uncertainties in the certified spectrum are about 4% around the peak maximum at 526 nm, using an excitation wavelength of 427 nm. The SRM also exhibits a strong resistance to photodegradation, with no measurable decrease in fluorescence intensity even after 8 h of laser irradiation.  相似文献   

12.
Paracetamol interaction with rat liver mitochondria in respiration media in the presence of succinate was the focus of this experiment. Fluorescence of paracetamol in water was studied by three-dimensional synchronous fluorescence fingerprint (SFF) and by excitation emission matrix (EEM). The direct molecular interactions of paracetamol and mitochondria were studied by fluorescence polarization technique. The paracetamol fluorescence maximum of SFF was Δλ = 110/λex = 320 nm, Fmax = 508 nm, and EEM maximum was λex = (320 nm)/λem = 425 nm, Fmax = 508. The fluorescence polarization results showed nonsignificant elevation of fluorescence polarization after addition of paracetamol into mitochondria in comparison to the control mitochondria group without paracetamol at time point t = 0. Paracetamol probably covalently bound to the mitochondrial surface proteins at time point t = 0, but paracetamol also entered mitochondria, which was observed as nonsignificant decline of fluorescence polarization during 30 min in the paracetamol-treated group. The practical advantages of spectral techniques (EEM, SFF, fluorescence polarization) are high sensitivity, reproducibility, minimal quantity of material, and capability to measure the mitochondrial autofluorescence.  相似文献   

13.
We have studied the spectral fluorescence and polarization characteristics of Z,Z-bilirubin IXα, at room temperature in chloroform and in aqueous buffer medium, within an equilibrium complex with human serum albumin (HSA), and also under low temperature conditions (T = −100°C) in isobutyl alcohol. We have observed a bathochromic shift of the fluorescence spectra, which is most pronounced for the bilirubin-albumin complex. The following are considered as possible reasons for the observed dependence of the position of the fluorescence (fluorescence excitation) spectra on the excitation (detection) wavelength: structural and spectral differences between the chromophores making up the bilirubin molecule; conformational heterogeneity of the pigment in solution; a contribution to the fluorescence from molecules which have not completed the vibrational relaxation process; inhomogeneous orientational broadening of the levels; heterogeneity of the microenvironment of the chromophores in the protein matrix. We show that polarized fluorescence of bilirubin occurs at room temperature, due to the anomalously short fluorescence lifetime τ (picosecond or subpicosecond ranges). Despite such a short τ, the absorption and emission polarization spectra suggest the presence of intramolecular nonradiative singlet-singlet energy transfer when bilirubin is excited to high vibrational sublevels of the S1 state (degree of polarization p = 0.11–0.12). When fluorescence is excited on the long-wavelength slope of the absorption band, no transfer occurs: the degree of polarization (p = 0.46−0.47) is close to the limiting value (p = 0.50). We discuss the question of the role played by exciton interactions between chromophores in the bilirubin molecule when it is excited. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 108–119, January–February, 2007.  相似文献   

14.
This didactic paper summarizes the mathematical expressions needed for analysis of fluorescence anisotropy decays from polarized frequency-domain fluorescence data. The observed values are the phase angle difference between the polarized components of the emission and the modulated anisotropy, which is the ratio of the polarized and amplitude-modulated components of the emission. This procedure requires a separate measurement of the intensity decay of the total emission. The expressions are suitable for any number of exponential components in both the intensity decay and the anisotropy decay. The formalism is generalized for global analysis of anisotropy decays measured at different excitation wavelengths and for different intensity decay times as the result of quenching. Additionally, we describe the expressions required for associated anisotropy decays, that is, anisotropy decays where each correlation time is associated with a decay time present in the anisotropy decay. And finally, we present expressions appropriate for distributions of correlation times. This article should serve as a reference for researchers using frequency-domain fluorometry.  相似文献   

15.
《光谱学快报》2013,46(4-5):645-659
Abstract

Steady‐state absorption, fluorescence excitation, and emission spectra of 6‐methoxy quinoline (6‐MQ) were measured at room temperature in cyclohexane, dioxane, ethanol, acetonitrile, water, and water–dioxane solvents. Absorption spectra of cyclohexane, n‐hexane, and isopentane solutions show resolved vibronic structure at room temperature. However, the excitation spectrum of cyclohexane solution is structureless and is found to be emission wavelength dependent, indicating the formation of at least two distinct species in the ground state. Similar behavior was observed in dioxane and water–dioxane solutions. For all other solutions, the fluorescence excitation spectrum of 6‐MQ was found to be the same for different emissions. Emission of 6‐MQ in all solvents consisted of two bands with their maxima around 355 nm (I) and 430 nm (II), the actual positions and the relative intensities being dependent on the solvent used. The bands I and II were respectively attributed to normal and protonated/H‐bonded species of either 1La or 1Lb states or mixed (1La/1Lb) state of ππ* character. Fluorescence decay of this dye in all solvents monitored over each emission maximum showed biexponential behavior, and the analysis yielded two different lifetime components for each emission band. The short and long fluorescence decay components were respectively in the range of 0.30–3.00 ns and 18–20 ns. The observed emission characteristics coupled with the nature of the fluorescence polarization spectra and two different decay components for each emission suggest the existence of two different conformers having two different excited electronic states.  相似文献   

16.
The fluorescence excitation and emission spectra of a liquid crystal E7 in ethanol have been explored at a variety of concentrations from very dilute solutions (<1.0×10−7 mol/L) to concentrated solutions (>1.0×10−2 mol/L) and also for neat E7. The result showed a strong dependence of the steady-state fluorescence behavior on E7 concentration in ethanol. The photophysical behavior has been interpreted in terms of short-range and long-range intermolecular interactions and ground-state molecular association as well as spectral changes of the fluorescence excitation and emission. The short-range intermolecular interaction characterized by the fluorescence emission band with the maximum between 376 and 385 nm gradually increases with increasing E7 concentration. On the other hand, the long-range intermolecular interaction characterized by the emission band with the maximum between 347 and 362 nm gradually decreases with increasing E7 concentration. Consequently, with increasing E7 concentration in ethanol the long-range interaction effect is reduced, whereas the short-range effect is enhanced and the monomer emission completely disappears at concentrations greater than 2.83×10−5 mol/L.  相似文献   

17.
We measured the intensity and anisotropy decays of the intrinsic tryptophan emission from hemoglobin solutions obtained using a 10-GHz frequency-domain fluorometer and a specially designed cuvette which allows front-face excitation on a free liquid surface. The cuvette eliminates reflections and stray emissions, which become significant for low-intensity fluorescence such as in hemoglobin. Three lifetimes are detectable in the subnanosecond range. The average lifetime of hemoglobin emission is ligand dependent. The measured values of average lifetimes are 91, 174, and 184 ps for deoxy-, oxy-, and carboxyhemoglobin, respectively. Fluorescence anisotropy decays of oxy-, deoxy-, and carbonmonoxyhemoglobin can be fitted with up to three correlation times. When three components are used, the floating initial anisotropyr o is, in each case, higher than the steady-state anisotropy of tryptophan in vitrified solution. For deoxy hemoglobin it is close to 0.4. The data are consistent with an initial loss of anisotropy from 0.4 to about 0.3 occurring in the first 2 ps.  相似文献   

18.
We observed the emission of l,6-diphenyl-l,3,5-hexatriene (DPH) when excited with the fundamental output of a fs Ti:sapphire laser at 860 nm. The emission spectra of DPH were identical to that observed for one-photon excitation at 287 nm. The dependence of the DPH emission intensity on laser power was cubic, indicating three-photon excitation of DPH at 860 nm. At a shorter wavelength of 810 nm, the dependence on laser power was quadratic, indicating a two-photon process. At an intermediate wavelength of 830 nm the mode of excitation was a mixture of two- and three-photon excitation. At 830 nm the anisotropy is no longer a molecular parameter, and the mode of excitation and anisotropy of DPH depends on laser power. Frequency-domain anisotropy decays of DPH in triacetin revealed the same rotational correlation times for two- and three-photon excitation. However, the time 0 anisotropy of DPH was larger for three-photon excitation than for two-photon excitation. Steady-state anisotropy data for DPH-labeled membranes revealed the same transition temperature for one- and three-photon excitation. These anisotropy data indicate that membrane heating was not significant with three-photon excitation and that three-photon excitation may thus be of practical usefulness in fluorescence spectroscopy and microscopy of membranes.  相似文献   

19.
应用激光光谱学技术,探讨了Tm3+离子掺杂透明氟氧化物玻璃陶瓷体系中声子调控对红色激光抽运荧光辐射性质的影响. 研究了基质结构和样品环境温度与电声子相互作用的联系以及声子变化对于荧光辐射产生的影响. 发现改变基质材料的SiO2含量能影响蓝色上转换荧光效率. 另外,依据温度与声子能量之间的联系,通过改变样品环境温度可明显调节低声子基质材料中掺杂离子激发态能级的布居速率,改变上转换效率. 关键词: 荧光辐射 声子 无辐射弛豫 荧光寿命  相似文献   

20.
Investigation of rotation movement of 3-amino-N-methylphthalimide in glycerol was carried out, taking into consideration the fluctuation of solvate structure. It was shown theoretically and experimentally that structural relaxation of the solvate shell, which follows excitation of the dye molecule, causes not only shift of the fluorescence spectrum in time but also additional rotation of the dye molecule. This effect, which may be called wavelength-dependent rotation, depends on the light frequency of both excitation and fluorescence. In particular, at excitation near the maximum of the absorption band, when the relaxation process is followed with the red shift of the fluorescence maximum, the anisotropy of fluorescence decreases faster in the red part of the fluorescence band than in the blue part. On the contrary, in the case of far anti-Stokes excitation, when the temporal shift of fluorescence is going to the blue, the anisotropy in the red part of the spectrum drops more slowly than in the blue part. Finally, there is a special excitation frequency which causes neither change of the fluorescence maximum nor acceleration of the rotational movement of the dye molecule. It is also shown that the temporal evolution of the spectrum and anisotropy of fluorescence in a polar dye solution may be quantitatively described using the socalled inhomogeneous broadening function (IBF). This function gives the distribution of dye molecules in a solution over frequencies of pure electronic transition due to fluctuations of the surrounding shell structure. Measurements of IBF changes in time carried out for 3-amino-N-methylphthalimide showed that during first 3 ns after excitation, the half-width of the IBF grows, and at the same time its maximum quickly shifts to the red. At the later time period there are only small changes of IBF position but considerable exponential decrease in its half-width. The IBF during this period preserves the Gaussian shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号