首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on an efficient sample clean‐up and field‐amplified sample injection online preconcentration technique in capillary electrophoresis with contactless conductivity detection, a new analytical method for the sensitive determination of melamine in milk samples was established. In order to remove the complex matrix interference, which resulted in a serious problem during field‐amplified sample injection, liquid–liquid extraction was utilized. As a result, liquid–liquid extraction provides excellent sample clean‐up efficiency when ethyl acetate was used as organic extraction by adjusting the pH of the sample solution to 9.5. Both inorganic salts and biological macromolecules are effectively removed by liquid–liquid extraction. The sample clean‐up procedure, capillary electrophoresis separation parameters and field‐amplified sample injection conditions are discussed in detail. The capillary electrophoresis separation was achieved within 5 min under the following conditions: an uncoated fused‐silica capillary, 12 mM HAc + 10 mM NaAc (pH = 4.6) as running buffer, separation voltage of +13 kV, electrokinetic injection of +12 kV × 10 s. Preliminary validation of the method performance with spiked melamine provided recoveries >90%, with limits of detection and quantification of 0.015 and 0.050 mg/kg, respectively. The relative standard deviations of intra‐ and inter‐day were below 6%. This newly developed method is sensitive and cost effective, therefore, suitable for screening of melamine contamination in milk products.  相似文献   

2.
Electrokinetic supercharging is one of the most powerful sample‐stacking methods that combines field amplified sample injection and transient ITP. In counter‐flow electrokinetic supercharging, a constant counter pressure is applied during sample injection in order to counterbalance the movement of the injected sample zone. As a result, there will be a pronounced increase in the amount of sample injected and the portion of the capillary available for electrophoresis. In this report, counter‐flow electrokinetic supercharging optimization factors such as the electric field application in the constant voltage and constant current modes, the magnitude of counter pressure, and the terminating electrolyte concentrations were investigated. The enrichments obtained with a 30 min injection of 10 nM catecholamines in 5 mM terminating electrolyte solution in the constant voltage mode applying a counter pressure of 1.3 psi were 41000‐fold for dopamine, 50 000‐fold for norepinephrine, and 32 000‐fold for epinephrine, yielding detection limits of 1.3, 1.4, and 1.2 nM, respectively, with absorbance detection at 200 nm.  相似文献   

3.
A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow‐through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow‐through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 μM mixture of the inorganic cations K+, Ba2+, Na+, Mg2+, and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7–1.0% and the values for the peak area were 0.7–1.4%; RSD were determined for ten repeated measurements.  相似文献   

4.
An electrophoretic stacking method has been developed for monitoring the therapeutic level of the antibiotic ceftazidime in blood plasma and microdialysates taken from peripheral soft tissues of the lower limbs of patients with diabetic foot syndrome. The biological samples are treated by addition of acetonitrile in an amount of 75% v/v and injected into a capillary in a large volume; after turning on the separation voltage, the residual acetonitrile is forced out of the capillary by the application of hydrodynamic pressure. The clinical samples were separated in an optimised background electrolyte composed of 50 mM chloroacetic acid +20% v/v methanol +0.5% v/v INST coating solution. The attained LOD for ceftazidime equalled 0.42 μg mL−1 (0.8 μM) and the migration time equalled 3.75 min when using a 25 μm capillary with minimum length of 31.5 cm. The separation was controlled by a maximum voltage of +30 kV and the movement of the analyte was accelerated by a pressure of 50 mbar. The RSD values for intra-day repeatability of the migration time and peak area are 0.14% and 3.8%, respectively; the inter-day values equalled 0.25% for the migration time and 7.3% for peak area, respectively. Pharmacological studies revealed that ceftazidime passes from the blood circulation to the peripheral tissues of the lower limbs with an efficiency of 20%. The introduction of CE control of ceftazidime level in diabetic foot represents a very important improvement in achieving the targeted therapeutic effect.  相似文献   

5.
Chiral separation of 12 pairs of basic analyte enantiomers including oxybutynin, bambuterol, tradinterol, clenbuterol, clorprenaline, terbutaline, tulobuterol, citalopram, phencynonate, fexofenadine, salbutamol, and penehyclidine was conducted by capillary electrophoresis using a single‐isomer anionic β‐cyclodextrin derivative, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin as the chiral selector. Parameters influencing separation were studied, including background electrolyte pH, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin concentration, buffer concentration, and separation voltage. A background electrolyte consisting of 50 mM Tris‐H3PO4 and 6 mM heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin at pH 2.5 was found to be highly efficient for the separation of most enantiomers, with other conditions of normal polarity mode at 10 kV, detection wavelength of 210 nm using hydrodynamic injection for 3 s. Under the optimal conditions, baseline resolution (>1.50) for 11 pairs of enantiomers and somewhat lower resolution for penehyclidine enantiomers (1.17) were generated. Moreover, the possible mechanism of separation of clenbuterol, oxybutynin, salbutamol, and penehyclidine was investigated using a computational modeling method.  相似文献   

6.
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.  相似文献   

7.
This work presents a capillary electrophoresis methodology for the enantiodetermination of cathinones in urine employing a liquid–liquid extraction sample pretreatment. The cathinones were enantioseparated by adding a mixture of 8 mM 2‐hydroxypropyl β‐cyclodextrin and 5 mM β‐cyclodextrin to the background electrolyte, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Field‐amplified sample injection was used as preconcentration strategy to improve the sensitivity. We studied various parameters that affect this stacking strategy, in particular, the sample solvent and its pH, the presence or absence of a low conductivity solvent plug introduced before the sample injection, the nature and volume of this plug, and the voltage and time of the electrokinetic injection of the sample. The optimum conditions were achieved by injecting a plug of isopropanol:H2O 50/50 at 50 mbar for 5 s prior to the electrokinetic injection of the sample prepared in an aqueous solution of HCl 10?6 M. The sensitivity enhancement factors were from 562 to 601 in terms of peak area and from 444 to 472 in terms of peak height. The method was validated by analyzing spiked urine samples, obtaining a linear range of 25 to 1000 ng/mL and limits of detection ranging from 15 to 45 ng/mL.  相似文献   

8.
Electrokinetic supercharging (EKS), a new and powerful on-line preconcentration method for capillary electrophoresis, was utilized in non-aqueous capillary electrophoresis (NACE) to enhance the sensitivity of phenolic acids. The buffer acidity and concentration, leader and terminator length and electrokinetic injection time were optimised, with the optimum conditions being: a background electrolyte of 40 mM Tris-acetic acid (pH 7.9), hydrodynamic injection of 50 mM ammonium chloride (22 s, 0.5 psi) as leader, electrokinetic injection of the sample (180 s, -10 kV), hydrodynamic injection of 20 mM CHES (32 s, 0.5 psi) as terminator, before application of the separation voltage (-25 kV). Under these conditions the sensitivity was enhanced between 1333 and 3440 times when compared to a normal hydrodynamic injection with the sample volume <3% of the capillary volume. Detection limits for the seven phenolic acids were in the range of 0.22-0.51 ng/mL and EKS was found to be 3.6-7.9 times more sensitive than large-volume sample stacking and anion selective exhaustive injection for the same seven phenolic acids.  相似文献   

9.
Fast capillary electrophoresis–mass spectrometry measurements under counter-electroosmotic analyte migration conditions are presented. Efficient separations of a homologous series of six hyaluronan oligosaccharides (comprising 1–6 hyalobiuronic acid moieties) could be completed in 65 s. Separations were achieved in short-length fused silica capillaries under high electric field strengths of up to 1.25 kV·cm−1. Capillary inner diameters ranging from 5 to 50 μm were investigated, resulting in an optimal value of 15 μm. The influence of capillary dimensions and buffer composition on separation efficiency and sensitivity are discussed. Optimal separations were achieved using a 28 cm × 15 μm capillary, a separation high voltage of 35 kV, a background electrolyte of 25 mM ammonium acetate adjusted to pH 8.5, and negative ionization mode. The optimized method was successfully applied to a bovine testicular hyaluronidase digest of hyaluronan. Only minimal sample pretreatment for protein-containing samples is required. The simple manual injection procedure and fast separations allow for a sample throughput of 35 samples per hour.  相似文献   

10.
Response surface methodology has been applied to the optimization of a simple and rapid non-aqueous capillary electrophoresis method for the separation and determination of several phenolic compounds belonging to the different families present in olive oil. A Box–Behnken design was employed and a total of 27 experiments were performed using olive oil samples spiked with the phenols and injected directly in the capillary after dilution 1:1 with 1-propanol. Finally, the background electrolyte (BGE) was constituted of 25 mM boric acid and 18 mM KOH in a mixture of 74:26 (v/v) 1-propanol/methanol. The hydrophobicity of the BGE allows its miscibility with the olive oil and, as a consequence, the possibility of characterizing and determining these kinds of compounds in this sample without any pretreatment. A hydrodynamic injection (6 s, −30 mbar) was applied and the separation was carried out using 35 °C and +20 kV of separation temperature and voltage, respectively. A capillary with two detection windows for serial online UV and fluorescence detection was satisfactorily employed. The validation of the method was carried out by setting the calibration curves, and the figures of merit were finally obtained. A lineal relationship between the corrected peak area and concentration and limits of detection in the order of micrograms per milliliter were found.  相似文献   

11.
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, infects approximately one third of the current world population. Isoniazid is one of the most frequently used first-line anti-TB drugs. In this study, we developed a sensitive cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography method (CSEI-Sweep-MEKC) for analyzing isoniazid in human plasma. Parameters including acetonitrile (ACN) percentage in the separation buffer; the injection time, and concentration of the high-conductivity buffer; sodium dodecyl sulfate (SDS) concentration; phosphate concentration in the sample matrix; and the sample injection time were all optimized to obtain the best analytical performance. The optimal background electrolyte comprised 50 mM phosphate buffer, 100 mM SDS, and 15% ACN. Non-micelle background electrolyte, containing 75 mM phosphate buffer and 15% ACN, was first injected into the capillary, followed by a short plug of 200 mM phosphate (high-conductivity buffer). Run-to-run repeatability (n = 3) and intermediate precision (n = 3) of peak area ratios were found to be lower than 8.7% and 11.4% RSD, respectively. The accuracy of the method was within 98.1–106.9%. The limit of detection of isoniazod in human plasma was 9 ng mL−1. Compared with conventional MEKC, the enhancement factor of the CSEI-Sweep-MEKC method was 85 in plasma samples. The developed method was successfully used to determine isoniazid concentration in patient plasma. The results demonstrated that CSEI-Sweep-MEKC has the potential to analyze isoniazid in human plasma for therapeutic drug monitoring and clinical research.  相似文献   

12.
A coaxial flow‐gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter‐current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow‐gating interfaces are originally designed for on‐line connection of capillary electrophoresis with analytical flow‐through methods. The basic properties of the described coaxial flow‐gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow‐through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K+, Ba2+, Na+, Mg2+ and Li+ ions in aqueous solution at equimolar concentrations of 50 μM. The repeatability of the migration times and peak areas evaluated for K+, Ba2+ and Li+ ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink.  相似文献   

13.
A sequential injection-capillary electrophoresis (SI-CE) system for the fast and automated quantitative analysis of anions and cations is described. Because of the low sample load in capillary electrophoresis a split injection approach had to be used to achieve reliable hydrodynamic injection. The use of a capillary of 8 cm effective length allowed for the separation of five inorganic cations within 11 s. One common electrolyte solution containing 12 mM l-histidine and 2 mM 18-crown-6 whose pH value was adjusted to 4.0 with 10% v/v acetic acid was used for anions and cations, thus the analysis of both groups of analytes could be carried out in rapid sequence simply by switching the polarity of the high voltage supply. The system also allows automated flushing of the capillary. Detection limits between about 2 and 5 micromol l(-1) could be achieved with the contactless conductivity detector employed.  相似文献   

14.
A sensitive approach of capillary electrophoresis coupled with field‐amplified sample injection and transient isotachophoresis was developed for the simultaneous determination of two β‐blockers: sotalol and metoprolol. In this dual focusing technique, the samples were prepared via only dissolution in ultrapure water and then injected electrokinetically. Phosphate acted as both the background electrolyte and the leading electrolyte. Its optimized concentration was 80 mM. A total of 25 mM of glycine was used as the terminating electrolyte. Under optimum conditions, good separation of sotalol and metoprolol was achieved within 10 min. In comparison with the conventional method, the sensitivity enhancement factors were up to 1031 and 919 for sotalol and metoprolol, respectively. The proposed method was employed in the determination of sotalol and metoprolol in spiked human urine samples. The limits of detection and limits of quantitation obtained via ultraviolet detection were 5 and 12 ng/mL, respectively, for sotalol, and 10 and 25 ng/mL, respectively, for metoprolol. The intraday repeatability values were lower than 2.7 and 1.7% for peak area and migration time, respectively. The assay is a simple and efficient strategy with potential for application in clinical and biochemical laboratories for monitoring sotalol and metoprolol.  相似文献   

15.
A simple, sensitive and rapid method has been developed for simultaneous separation and quantification of three different drugs: oxytocin (OT), norfloxacin (NOR) and diclofenac (DIC) sodium in milk samples using capillary electrophoresis (CE) with UV detection at 220 nm. Factors affecting the separation were pH, concentration of buffer and applied voltage. Separation was obtained in less than 9 min with sodium tetraborate buffer of pH 10.0 and applied voltage 30 kV. The separation was carried out from uncoated fused silica capillary with effective length of 50 cm with 75 µm i.d. The carrier electrolyte gave reproducible separation with calibration plots linear over 0.15–4.0 µg/mL for OT, 5–1000 µg/mL for NOR and 3–125 µg/mL for DIC. The lower limits of detection (LOD) were found to be 50 ng/mL for OT, and 1 µg/mL for NOR and DIC. The method was validated for the analysis of drugs in milk samples and pharmaceutical preparations with recovery of drugs within the range 96–100% with RSD 0.9–2.8%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
《Electrophoresis》2018,39(17):2195-2201
A sensitive, fast, and effective method, field‐amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl‐β‐CD (HP‐β‐CD) and tetrabutylammonium‐L‐glutamic acid (TBA‐L‐Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP‐β‐CD, and 10 mM TBA‐L‐Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700–900 folds. Calibration curves were in a good linear relationship within the range of 62.5–5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations.  相似文献   

17.
Summary A capillary zone electrophoresis method is proposed for the separation of five antidepressants. Optimum conditions for the separation were investigated. A background electrolyte solution consisting of 40 mM phosphate buffer adjusted to pH 2.5, hydrodynamic injection, and a 28 kV separation voltage were used. Relative standard deviations (RSD) were <0.9% and <1.7% for migration time and corrected peak area (n=21), respectively. The detection limits for the five antidepressants ranged from 0.3 to 0.7 mg L−1. The stability of the solutions, linearity, accuracy, and precision were examined during validation of the method. The method is rapid and sensitive, when it was tested for the analysis of pharmaceutical formulations the recoveries obtained were between 98 and 103% of the nominal content.  相似文献   

18.
《Electrophoresis》2018,39(14):1754-1762
A novel and fully automated sequential injection analysis manifold coupled to a capillary electrophoresis apparatus with amperometric detection, is described. The sequential injection manifold was isolated from the high voltage by inserting an air plug into the circuit. Small buffer reservoirs were used to avoid the need to pump fresh buffer to the interface during the electrophoretic separation. No decoupling device was used to mitigate the interference from the high voltage electric field, instead the potential shift induced by the separation voltage, was accounted for. The new hydrodynamic injection method presented is based on the overpressure created in the circuit when a pinch valve is closed for a predetermined time. The injection method yields RSD values of peak height and area below 2.55 and 1.82%, respectively, at different durations of valve closure (n = 5). The capillary and working electrode alignment was achieved by adapting a commercial available capillary union. When the electrode was replaced, the alignment method proved to be very reliable, yielding RSD values of peak height and area lower than 2.64 and 2.08%, respectively (n = 8). Using this system with a gold microelectrode, dopamine, and epinephrine could be quantified within the concentration range of 1–500 μM and detected at a concentration of 0.3 μM. The methods here presented could be applied for the development of new capillary electrophoresis systems with amperometric detection and/or to the design of fully automated systems for online process monitoring purposes.  相似文献   

19.
A rapid and simple method for separation and determination of inorganic anions by capillary zone electrophoresis was described. The detection was carried out directly with a diode array detector. The experimental conditions, such as concentration of carrier electrolyte, capillary length, voltage, and temperature were optimized. In order to improve selectivity, different organic modifiers were also investigated. The baseline separation of 10 light-absorbing anions was accomplished within 3.5 min with a background electrolyte consisting of 50 mM sodium tetraborate containing 5% MeOH. Linear plots were obtained in the concentration range of 0.1-10 microg/ml. With sample stacking injection, the quantitation limits of the anions were found to be in the range of 0.02-0.1 microg/ml. The proposed method was successfully applied to the determination of inorganic anions in environmental samples and in effluents of a power plant.  相似文献   

20.
Electrokinetic supercharging, a convenient and powerful online preconcentration technique in capillary electrophoresis, was introduced and evaluated for the determination of two alkaloids, berberine and jatrorrhizine, in mice fecal samples for the first time. The method depended on using a bare fused silica capillary (50 cm × 50 μm i.d.) and applying the voltage of 25 kV with UV detection at 205 nm. Parameters that affect the separation and preconcentration efficiency have been optimized. The optimum conditions used were as follows: background electrolyte consisting of 40mM sodium dihydrogenphosphate containing 30% methanol (v/v); hydrodynamic injection of 20mM KCl (50 mbar × 150 s) as the leading electrolyte; electrokinetic injection of the sample (+15 kV, 120 s) followed by the hydrodynamic injection of 30mM dodecyl trimethyl ammonium chloride (50 mbar × 12 s) as the terminating electrolyte. The results showed that the detection sensitivity of berberine and jatrorrhizine was, respectively, improved up 2740- and 2928-fold compared with normal injection, providing limits of detection lower than 3 ng/mL with good repeatability in areas (relative standard deviation < 3%). In summary, the developed method proved its ability in analyzing trace alkaloids in complicated biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号