首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
正、负离子表面活性剂混合胶团棒-球转变模型   总被引:7,自引:1,他引:7  
提出正、负离子表面活性剂混合胶团的棒-球转变模型,认为在溶液浓度较高时,随浓度进一步增大,正、负离子表面活性剂混合胶团经历了一个长棒变短、短棒变为球状的转变过程,并通过混合胶团溶液的相行为、光散射及流变性质测定等加以证实。  相似文献   

2.
对于羧酸钠-季铵盐正、负离子表面活性剂混合体系(I. C_9COONa-C_(10)NMBr及ⅡC_(11)C-OONa-C_8NMBr)的荧光探针研究揭示出: 表面活性剂胶团与囊泡形态的微极性相同, 但微粘度有显著差别(囊泡大于胶团). 体系Ⅰ在超声处理前后有不同的微粘度进一步说明胶团超声分散再自组合成囊泡的结果. 自时间分辨荧光光谱得出体系Ⅰ的较大胶团聚集数表明此混合胶团为长棒状.  相似文献   

3.
己醇的加入使C12-s-C12·2Br(s=3,4,6)的临界胶团浓度cmc降低,s越大其影响也越显著.己醇参与组成了混合胶团,当添加的己醇量相同时,它在混合胶团中的摩尔分数几乎一样.混合胶团表面反离子解离度随己醇浓度增大而增大.  相似文献   

4.
10-十一烯酸衍生物混合体系有序溶液与聚集体研究   总被引:1,自引:1,他引:0  
对三甲基-[2-(10-十一烯酰氧乙基)]碘化铵CH2=CH(CH2)8COOCH2CH2N(CH3)3I和N,N-[2-(10-十一烯酰甲基牛磺酸钠)]CH2=CH(CH2)8CON(CH3)CH2CH2SO3Na的表面及聚集行为进行了研究。混合体系溶解度良好,在40cmc时仍为稳定胶团溶液。结合正规溶液理论计算了混合体系表面吸附层、胶团的组成及分子间作用参数。基于两亲分子几何结构及分子间相互作用原理对上述现象进行了合理解释,发现了少量长链脂肪醇促使正负离子表面活性剂混合胶团转化为囊泡的新现象。  相似文献   

5.
10-十一烯酸衍生物混合体系的表面化学   总被引:2,自引:0,他引:2  
自表面张力测定对10-十一烯酸胆碱衍生物(三甲基-[2-(10-十一烯酰氧乙基)]碘化铵)与10-十一烯酸钠混合体系的表面吸附和胶团形成作了研究;对该体系中的囊泡形成进行了电镜观察。结果表明,疏水链端基为不饱和烯基的正、负离子表面活性剂混合体系和有饱和疏水链的混合体系一样,也有很高的表面活性,易于表面吸附和形成胶团,并且容易在水及乙醇-水溶液中形成相当稳定的囊泡。这些结果的原因可归之于正、负表面活  相似文献   

6.
C12-s-C12•2Br和己醇混合水溶液的胶团化行为   总被引:1,自引:0,他引:1  
己醇的加入使C12-s-C12•2Br(s=3,4,6)的临界胶团浓度cmc降低,s越大其影响也越显著.己醇参与组成了混合胶团,当添加的己醇量相同时,它在混合胶团中的摩尔分数几乎一样.混合胶团表面反离子解离度随己醇浓度增大而增大.  相似文献   

7.
非离子表面活性剂的加溶作用有助于正负离子表面活性剂的溶解,在恰当比例时,能基本保持其表面活性;正负离子表面活性剂与非离子表面活性剂之间的相互作用很弱,容易形成接近“理想”的混合胶团;恒定非离子表面活性剂浓度时,随正负离子表面活性剂浓度增加,溶液的浊点也增加;超过临界胶团浓度后浊点下降。  相似文献   

8.
碳氢与碳氟表面活性剂混合水溶液的胶团与囊泡形成   总被引:2,自引:0,他引:2  
碳氢与碳氟表面活性剂混合水溶液的胶团与囊泡形成丁慧君,戴群英,张兰辉,赵国玺(北京大学物理化学研究所,北京,100871)关键词囊泡,表面活性剂,胶团形成,负离子结合度,表面活性利用结构简单的表面活性剂代替生物膦脂形成人工囊泡的研究正受到普遍关注[1...  相似文献   

9.
正、负离子表面活性剂混合体系的负触变性   总被引:2,自引:0,他引:2  
报导正、负离子表面活性剂混合体系的负触变性(负触变性通常只存在于某些高分子溶液及极少数粗分散体系中).总结出负触变性的形成规律,提出了负触变性的形成机理,认为负触变性的产生是由于溶液中存在具有一定大小的层状胶团,当溶液流动时,层状胶团双层之间的平行排列方式被打乱,导致溶液粘度随时间而增加.  相似文献   

10.
根据所建议的表面活性剂疏水碳氢基在水溶液中自卷曲的分子构型和碳氢链/水界面自由能降低模型导出了对称正-负离子表面活性剂胶团化和表面吸附自由能及疏水自由能公式,计算结果支持上述理论模型。  相似文献   

11.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

12.
The formation and microstructure of cubic phases were investigated in anionic and cationic surfactant-containing systems at 25 degrees C. In the system sodium dodecyl sulfate(SDS)-dodecyltrimethylammonium bromide(DTAB)-water, mixing of two surfactants shows the phase transition hexagonal phase (H(1))-->surfactant precipitate, accompanied by an obvious decrease in the cross-sectional area per surfactant in the rod micelles of the hexagonal liquid crystal. In the mixed systems brine(A)-dodecane(B)-SDS(C)-DTAB(D)-hexanol(E), the isotropic discontinuous cubic phase is formed from the H(1) phase at a low cationic surfactant weight fraction, Y=D/(C+D), and from the lamellar phase at high Y upon dilution with equal amounts of oil and brine, respectively. The minimum surfactant concentration to form the cubic phase decreases with increases both in cationic surfactant weight fraction Y from 0 to 0.30 and in hexanol weight fraction, W(1)=E/(C+D+E), accordingly. The maximum solubilization for oil of the cubic phase reaches 43 wt% at 14 wt% of mixed surfactants and alcohol. Copyright 2000 Academic Press.  相似文献   

13.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

14.
The polymerization of acrylamide in mixed micellar solutions of surfactants, initiated by NaHSO3 has been studied at 20 and 3Q° C with time variable method of thermokinetics for 1. 5-order reaction. The results indicate that the mixed micellar systems of cationic or anionic with zwitterionic surfactants (SLS/ CTAB, SLS/ TTAB, SLS/ SDS) and cationic with nonionic surfactants (Brij 357sol; CTAB, Bri-J35/TTAB, Brij35/ DTAB) have catalytic effect on the polymerization in the order, at 20° C. SLS/ SDS SLS/ TTAB SLS/ CTAB Brij35/ CTAB at 30° C SLS/ SDS SLS/ TTAB≈ / CTAB Bri-j35/ DTAB= sBrij35/ TTAB as Brij35/ CTAB, while Brij35/ SDS mixed micellar system has inhibition. These effects are attributed to the effect of the Stern layer of mixed micelles on the step of initiator (HSOT) to form free radical.  相似文献   

15.
The clouding behavior, i.e., formation of phase separation at elevated temperature (the temperature being known as cloud point (CP)), of three amphiphilic drugs, amitriptyline (AMT), clomipramine (CLP) and imipramine (IMP) hydrochlorides in the presence of various additives, like cationic surfactants (conventional and gemini), nonionic surfactants, bile salts, anionic hydrotropes, sodium salts of fatty acids and cyclodextrin has been investigated. These additives are generally used as drug delivery systems. The drugs used are tricyclic antidepressants. All the surfactants increase the CP of mixed micelles formed by cationic (conventional and gemini) and nonionic surfactants. Hydrotropes, bile salts and fatty acid salts, when added in low concentrations, increase the CP, whereas at high concentrations, they decrease it. β-Cyclodextrin behaves as simple sugar and decreases the CP of the drug solutions.  相似文献   

16.
The composition of mixed micelles and mixed micelle — solution interfaces changes with the concentration and molar ratio of the cationic and anionic surfactants present. The micelle — solution interface includes besides the headgroups of both surfactants, the counterions of the surfactant in excess. The finding of an enhanced binding of counterions to mixed micelles may be of some practical importance in decontamination.  相似文献   

17.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

18.
Viscosity measurements on aqueous micellar solutions of cationic surfactants containing phenol with and without sodium bromide were made to study the sphere‐to‐rod transitions. Effect of surfactant structure (nonpolar tail, polar head group sizes and counterion), temperature, and phenol and sodium bromide concentration on the viscosity behavior of the surfactant solution is discussed. The sphere‐to‐rod transition is usually indicated by a marked increase in viscosity. While low temperature, high surfactant concentration, presence of salt, and hydrophobic nature of surfactant all favor the formation of rod‐like micelles, the presence of phenol showed peculiar behavior. Initial additions of phenol (up to about 2.5 wt%) showed a marked increase in viscosity, independent of the nature and concentration of surfactant and temperature; lower viscosities were observed at higher phenol concentration. Conductance and sound velocity results support the viscosity results.  相似文献   

19.
An anionic/cationic mixed surfactant aqueous system of surfactin and cetyl trimethyl ammonium bromide (CTAB) at different molar ratios was studied by surface tension and fluorescence methods (pH 8.0). Various parameters that included critical micelle concentration (cmc), micellar composition (X 1), and interaction parameter (β m) as well as thermodynamic properties of mixed micelles were determined. The β m was found to be negative and the mixed system was found to have much lower cmc than pure surfactant systems. There exits synergism between anionic surfactin and cationic CTAB surfactants. The degree of participation of surfactin in the formation of mixed micelle changes with mixing ratio of the two surfactants. The results of aggregation number, fluorescence anisotropy, and viscosity indicate that more packed and larger aggregates were formed from mixed surfactants than unmixed, and the mixed system may be able to form vesicle spontaneously at high molar fraction of surfactin.  相似文献   

20.
Simulations of mixed cationic/anionic wormlike micellar systems have been carried out for a wide range of compositions, including pure anionic and cationic systems. It was found that the wormlike micelle formed by only cationic surfactant molecules is unstable and transforms to a set of small spherical micelles. Adding anionic surfactants with a short hydrophobic chain (only eight carbon atoms) results in stable wormlike micelles. The 34/66 cationic/anionic worm is stable and symmetrical, while the 50/50 mixture yields a flattened worm, indicating a phase transition to the lamellar phase. All these observations are in excellent agreement with the experimental results of Raghavan et al. (Langmuir 2002, 18, 3797), and they provide a molecular mechanism for their observations. The addition of octyltrimethylammonium chloride increases the radius of the worm due to the bigger hydrophobic part. Meanwhile, the length of the worms decreases with the concentration of cationic surfactant and reaches a minimum for the 50/50 mixture. The latter system is of special interest due to a zero surface charge density. The worm with the electrostatically neutral surface was used to investigate intermicellar interactions. The molecular dynamics (MD) simulations show that the merging process requires a substantial activation energy even in the case of reduced electrostatic repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号