首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a microbead-packed PDMS microchip with an integrated electrospray emitter for sample pretreatment prior to sheathless ESI-MS. We prove the concept of analytical functions integrated onto a cm-sized area of a single bulk material. The microchip consists of two PDMS substrates replicated from SU-8 fabricated silicon wafer masters, bonded together after oxidation by corona discharge treatment. The channel within the microchip contains a grid structure that was used to trap 5 microm hypercross-linked polystyrene beads. The beads acted as a medium for sample desalting and enrichment. Electrical contact for the sheathless ESI process was achieved by coating the integrated emitter with conductive graphite powder after applying a thin layer of PDMS as glue. The coating as well as the bond of the PDMS structures showed excellent durability. A continuous spray was obtained from the microchip for over 800 h in a long-term electrospray stability experiment. Desalting and enrichment of neuropeptides from a physiological salt solution was successful by loading the sample onto the packed beads, followed by a washing and an eluting step. The results were obtained and evaluated using a TOF MS. An LOD of approximately 20 fmol (loaded onto the beads) for angiotensin II was obtained from a sample of neuropeptides dissolved in physiological salt solution.  相似文献   

2.
We describe the integration of a cyclo-olefin polymer based microchip with a sheathless capillary tip for electrospray ionization-mass spectrometry (ESI-MS). The microchip was fabricated by hot embossing and thermal bonding. Its design includes a side channel for adjusting the composition of the electrospray solution so that analytes in 100% water can be analyzed. The fused silica capillaries, used for sample introduction, and the electrospray tips for MS coupling were directly inserted into the microchannel before thermal bonding of the device. A microfabricated on-chip gold microelectrode was used to apply the electrospray voltage. Annealing the device after thermal bonding increased the pressure resistance of the microchip. The cross section of the microchannel was imaged by scanning electron microscopy to estimate the effects of the annealing step. The relationship between the applied electrospray voltages and MS signal was measured at different flow rates by coupling the device to an ion trap mass spectrometer. The performance of the microchip was evaluated by MS analysis of imipramine in ammonium acetate buffer solution by direct infusion. An alkylacrylate based monolith polymer bed for on-chip sample pretreatment and separation was polymerized in the microchannel and tested for ESI-MS applications.  相似文献   

3.
《Electrophoresis》2017,38(3-4):521-524
Acupuncture sample injection is a simple method to deliver well‐defined nanoliter‐scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost‐effective acupuncture sample injection method can be used for PDMS microchip‐based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA‐HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.  相似文献   

4.
The ability to accurately inject small volumes of sample into microfluidic channels is of great importance in electrophoretic separations. While electrokinetic injection of nanoliter scale volumes is commonly utilized in microchip capillary electrophoresis (MCE), mobility and matrix bias makes quantitation difficult. Herein, we describe a new injection method based on the simple patterning of the crossing of channels that does not require sophisticated instrumentation. The sample volume injected into the separation channel is dependent on the ratio of the widths of the crossing channels. This injection method is capable of introducing, into a separation channel, multiple plugs of sample on a large scale. This injection technique is tested for zone electrophoresis in native and surface modified poly(dimethylsiloxane) (PDMS) chips.  相似文献   

5.
The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.  相似文献   

6.
We have developed a new microfluidic chip capable of accurate metering, pneumatic sample injection, and subsequent electrophoretic separation. The pneumatic injection scheme, enabling us to introduce a solution without sampling bias unlike electrokinetic injection, is based upon the hydrophobicity and wettability of channel surfaces. An accurately metered solution of 10 nL could be injected by pneumatic pressure into a hydrophilic separation channel through Y-shaped hydrophobic valves, which consist of polydimethylsiloxane (PDMS) and fluorocarbon (FC) film layers. We demonstrated the successful pneumatic injection of a red ink solution into the separation channel as a proof of the concept. A mixture of fluorescein and dichlorofluorescein (DCF) could be baseline-separated using a single power source in microchip electrophoresis.  相似文献   

7.
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip CE separations. The PDMS devices used for the evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3?psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~ 100?pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure, and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1?Hz to > 2?Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4-cm-long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations for multiplexing CE separations and for sample-limited bioanalyses are discussed.  相似文献   

8.
An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and injection cross channel. The operation of running buffer refreshing or channel cleaning was simplified by vacuuming one end of the tip and placing the other tip into the solution vial. Therefore, this fabrication method can be easily applied to most analytical laboratories economically without soft lithography and plasma bonding equipments. The attractive performance of the novel PDMS microchips has been demonstrated by using laser-induced fluorescence detection for separation of proteins. The addition of 0.04% Brij 35 in 0.04 mol/L phosphate buffer (pH 7.0) can reduce the adhesion of proteins in multienzyme tablet and make separation more easily. The electroosmotic flow (EOF) exhibits pH-independence in the range of 3-1 1 in dynamic modified microchannel.  相似文献   

9.
A system of microchip capillary electrophoresis/electrospray ionization mass spectrometry (microchip-CE/ESI-MS) for rapid characterization of proteins has been developed. Capillary electrophoresis (CE) enables rapid analysis of a sample present in very small quantity, such as at femtomole levels, at high resolution. Faster CE/MS analysis is expected by downsizing the normal capillary to the microchip (microchip) capillary. Although rapidity and high resolution are advantages of CE separation, electroosmotic flow (EOF) instability caused by the interaction between proteins and the microchannel surface results in low reproducibility in the analysis of basic proteins under neutral pH conditions. By coating the microchannel surface with a basic polymer, polyE-323, basic proteins, which have pI values of over 7.5, could be separated and detected by microchip-CE/MS on quadrupole (Q) and time-of-flight (TOF) hybrid instruments. By increasing the cone and collision voltages during the analysis by microchip-CE/ESI-MS of a small protein, some product ions, which contain the sequence information, could also be obtained, i.e., 'top-down' analysis of the protein could be accomplished with this microchip-CE/MS system. To our knowledge, this is the first report of 'top-down' analysis of a protein by microchip-CE/MS. Since it requires a much shorter time and a smaller sample amount for analysis than the conventional liquid chromatography (LC)/ESI-MS method, microchip-CE/MS promises to be suitable for the high-throughput characterization of proteins.  相似文献   

10.
Li HF  Liu J  Cai Z  Lin JM 《Electrophoresis》2008,29(9):1889-1894
The present study reports a simple method of coupling a glass microchip to an electrospray ionization (ESI) quadrupole time-of-flight mass spectrometer (QTOF-MS) for separation and identification of peptides. A sheath-flow electrospray interface was constructed based on attaching a short fused-silica capillary to the microchip. The dead volume at the interface was effectively reduced by wet etching an approximate flat-bottom capillary insertion channel coaxial to the end of separation microchannel and using a wire-controlled epoxy-blocking attachment method. The makeup liquid and neb gas were coaxially pumped through two stainless-steel tees to maintain a stable and efficient electrospray. The coupled microchip/ESI-QTOF-MS system was successfully used to carry out electrophoresis separation of peptides and ESI-QTOF-MS identification.  相似文献   

11.
Liu C  Cui D  Cai H  Chen X  Geng Z 《Electrophoresis》2006,27(14):2917-2923
We present a novel concept of glass/poly(dimethylsiloxane) (PDMS)/glass sandwich microchip and developed a thin-casting method for fabrication. Unlike the previously reported casting method for fabricating PDMS microchip, several drops of PDMS prepolymer were first added on the silanizing SU-8 master, then another glass plate was placed over the prepolymer as a cover plate, and formed a glass plate/PDMS prepolymer/SU-8 master sandwich mode. In order to form a thin PDMS membrane, a weight was placed on the glass plate. After the whole sandwich mode was cured at 80 degrees C for 30 min, the SU-8 master was easily peeled and the master microstructures were completely transferred to the PDMS membrane which was tightly stuck to the glass plate. The microchip was subsequently assembled by reversible sealing with the glass cover plate. We found that this PDMS sandwich microchip using the thin-casting method could withstand internal pressures of >150 kPa, more than 5 times higher than that of the PDMS hybrid microchip with reversible sealing. In addition, it shows an excellent heat-dissipating property and provides a user-friendly rigid interface just like a glass microchip, which facilitates manipulation of the microchip and fix tubing. As an application, PDMS sandwich microchips were tested in the capillary electrophoresis separation of fluorescein isothiocyanate-labeled amino acids.  相似文献   

12.
A novel method for rapid separation and determination of ascorbic acid and uric acid has been developed with a polycation-modified poly(dimethylsiloxane) (PDMS) microchip under a negative-separation electric field. Just by flushing the microchip with aqueous solutions of the polycations, poly(allylamine) hydrochloride, poly(diallyldimethylammonium chloride) or chitosan could be stably coated on the PDMS microchannel surface, which resulted in a reversed electroosmotic flow and thus the rapid and efficient separation of the two substrates. Factors influencing the separation, including polycation category, buffer solution, detection potential and separation voltage, were investigated and optimized. The cheapness, rapid analysis speed and the successful analysis of human urine make this microsystem attractive for application in clinics. Figure The electropherograms of 100 μ/mL AA and UA in (1) PAH, (2) PDDA, (3) Chitosan modified PDMS microchannels and native PDMS microchip (4).  相似文献   

13.
Wang W  Zhou F  Zhao L  Zhang JR  Zhu JJ 《Electrophoresis》2008,29(3):561-566
A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.  相似文献   

14.
The online coupling of microchip electrophoresis (ME) as a fast, highly efficient, and low-cost miniaturized separation technique to mass spectrometry (MS) as an information-rich and sensitive characterization technique results in ME–MS an attractive tool for various applications. In this paper, we review the basic concepts and latest advances in technology for ME coupled to MS during the period of 2016–2021, covering microchip materials, structures, fabrication techniques, and interfacing to electrospray ionization (ESI)–MS and matrix-assisted laser desorption/ionization–MS. Two critical issues in coupling ME and ESI–MS include the electrical connection used to define the electrophoretic field strength along the separation channel and the generation of the electrospray for MS detection, as well as, a miniaturized ESI-tip. The recent commercialization of ME–MS in zone electrophoresis and isoelectric focusing modes has led to the widespread application of these techniques in academia and industry. Here we summarize recent applications of ME–MS for the separation and detection of antibodies, proteins, peptides, carbohydrates, metabolites, and so on. Throughout the paper these applications are discussed in the context of benefits and limitations of ME–MS in comparison to alternative techniques.  相似文献   

15.
The first carbon-based dual-electrode detector for microchip capillary electrophoresis (CE) is described. The poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to another PDMS layer containing carbon fiber working electrodes. End-channel amperometric detection was employed and the performance of the chip was evaluated using catechol. The response was found to be linear between 1 and 600 microM with an experimentally determined limit of detection (LOD) of 500 nM and a sensitivity of 30 pA/microM. Collection efficiencies for catechol ranged from 36.0 to 43.7% at field strengths of 260-615 V/cm. The selectivity that can be gained with these devices is demonstrated by the first CE-based dual-electrode detection of a Cu(II) peptide complex. These devices illustrate the potential for a rugged and easily constructed microchip CE system with an integrated carbon-based detector of similar scale.  相似文献   

16.
An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.  相似文献   

17.
选择了L-精氨酸和L-苯丙氨酸为分离样品体系,根据电泳实验提出样品基本参数,通过模拟计算考察了进样管道宽度和进样时间对进样方差的贡献;根据分离度与分离长度拟合曲线确定电泳芯片的有效分离长度;对化学发光柱后衍生管道施加的夹流电压进行了模拟优化,得出氨基酸体系分离分析的电泳芯片设计方案和操作参数为:进样管道宽度为分离管道宽度的1/2,简单进样充样时间应大于5 s,分离管道有效分离长度为30 mm,衍生夹流比1.0~1.6。根据模拟优化结果提出了电泳芯片设计方案,采用整体浇注法制作带有柱后衍生反应器的PDMS电泳芯片,按照模拟计算提出的电压操作参数实现了精氨酸和苯丙氨酸样品体系的准确进样、芯片电泳分离和柱后衍生化学发光检测。电泳过程模拟结果和实验结果相结合,考察了柱后衍生对样品谱带展宽的影响,简单进样过程样品泄露引起的谱峰拖尾现象,并讨论了夹流进样法对减小进样方差和抑制样品泄露的贡献。  相似文献   

18.
In this study we compare on-line gel permeation chromatography (GPC) electrospray ionization (ESI) time-of-flight (TOF) mass spectrometry (MS) to automated GPC matrix assisted laser desorption ionization (MALDI) TOF MS for poly (dimethylsiloxane) (PDMS) analysis. Average mass values for a hydroxyl-terminated PDMS (OH-PDMS) sample were obtained and compared to traditional GPC that was calibrated with narrow polystyrene standards, by direct ESI and MALDI MS analysis, by a summation of mass spectra of all GPC fractions, and also by the recalibration method determined by both mass spectrometric methods. Quantitatively, the difference noted here between these hyphenated techniques is that GPC-ESI-TOF MS effectively reports the low-mass oligomers and underestimates the high-mass oligomers, while GPC-MALDI-TOF MS effectively reports the high-mass oligomers and underestimates the low-mass oligomers. In the GPC-ESI-TOF MS experiments, ion current suppression was observed in the high molecular weight region. The suppression effect was confirmed by repeatable sample runs and by injecting different PDMS samples. Higher chromatographic resolution was observed for GPC-ESI-TOF MS compared to GPC-MALDI-TOF MS. In fact, truly mono-disperse oligomers were observed in the low molecular weight range from GPC-ESI MS experiments.  相似文献   

19.
A novel microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using laser micromachining. The IEF microchip incorporated a separation channel (50 micro x 30 micro x 16 cm), three fluid connectors, and two buffer reservoirs. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, which were isolated from the separation channel by porous membranes. Direct ESI-mass spectrometry (MS) using electrosprays produced directly from a sharp emitter "tip" on the microchip was evaluated. The results indicated that this design can produce a stable electrospray and that performance was further improved and made more flexible with the assistance of a sheath gas and sheath liquid. Error analysis of the spectral data showed that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 h. The production of stable electrosprays directly from microchip IEF device represents a step towards easily fabricated microanalytical devices. Microchannel IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. Direct microchannel IEF-ESI-MS was demonstrated using the microfabricated chip with an ion-trap mass spectrometer for characterization of protein mixtures.  相似文献   

20.
Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface, and an electrospray ionization (ESI) emitter were developed to improve the speed and throughput of metabolism research. Validation of the microchip method was performed using bufuralol 1-hydroxylation via CYP450 enzymes as the model reaction. The metabolite, 1-hydroxybufuralol, was easily separated from the substrate (R(s)=0.5) with very good detection sensitivity (LOD=9.3nM), linearity (range: 50-500nM, r(2)=0.9997), and repeatability (RSD(Area)=10.3%, RSD(Migrationtime)=2.5% at 80nM concentration without internal standard). The kinetic parameters of bufuralol 1-hydroxylation determined by the microchip capillary electrophoresis (CE)-ESI/mass spectrometry (MS) method, were comparable to the values presented in literature as well as to the values determined by in-house liquid chromatography (LC)-UV. In addition to enzyme kinetics, metabolic profiling was demonstrated using authentic urine samples from healthy volunteers after intake of either tramadol or paracetamol. As a result, six metabolites of tramadol and four metabolites of paracetamol, including both phase I oxidation products and phase II conjugation products, were detected and separated from each other within 30-35s. Before analysis, the urine samples were pre-treated with on-chip, on-line liquid-phase microextraction (LPME) and the results were compared to those obtained from urine samples pre-treated with conventional C18 solid-phase extraction (SPE, off-chip cartridges). On the basis of our results, the SU-8 CE-ESI/MS microchips incorporating on-chip sample pre-treatment, injection, separation, and ESI/MS detection were proven as efficient and versatile tools for drug metabolism research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号