首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy.The Raman spectroscopy results showed a decreasing sp3 fraction (an increasing trend in ID/IG ratio) with increasing argon flow from 0 to 13 sccm. The sp3:sp2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp3:sp2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.  相似文献   

2.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

3.
This paper discusses the seawater and saline solutions effects on the tribological behavior of diamond-like carbon (DLC) films. The adsorption of Fe on DLC surface is one of the mechanisms that is believed to be the cause of the decrease in dispersive component of the surface energy and increase of the ID/IG ratio leading to low friction coefficient and wear rate under corrosive environments. Tribological behaviors DLC films were experimentally evaluated under corrosive environments by using steel ball and DLC coated steel flat under rotational sliding conditions. The DLC films were prepared on 440 stainless steel disks by DC-pulsed PECVD using methane as a precursor gas. Two different set of tribological system was assembled, one when the liquids and the pairs were put inside of a stainless steel vessel and others inside of a PTFE. Every tribological test was performed under 10 N normal load120 mms? 1 of sliding speed. The friction coefficients were evaluated during 1000 cycles.  相似文献   

4.
The a-CNx films were deposited onto high-speed steel substrate by pulsed laser deposition at different nitrogen pressures. The tribological properties of the films in humid air and in vacuum were investigated using a ball-on-disk tribometer under various loads. The composition, microstructure and morphology of the films, wear tracks and paired balls were characterized by energy dispersive X-ray analysis (EDXA), X-ray photoelectron spectrum (XPS), Raman spectroscopy and scanning electron microscopy (SEM). With increasing the deposition pressure, the fraction of sp3 C bond reduces, the fraction of trapped nitrogen increases and the friction coefficient of the films declines both in humid air and vacuum. The friction coefficient of a-CNx film decreases with increasing normal load. The tribological performances of the films in humid air are better than those of in vacuum. A transferred graphite-like tribo-layer is observed from a-CNx film to the paired ball for both environments.  相似文献   

5.
A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily.  相似文献   

6.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

7.
The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si3N4) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.  相似文献   

8.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

9.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

10.
A novel hybrid technique for diamond-like carbon (DLC) film deposition has been developed. This technique combines the electron cyclotron resonance chemical vapor deposition (ECRCVD) of C2H2 and metallic magnetron sputtering. Here we described how DLC film is used for a variety of applications such as stamper, PCB micro-tools, and threading form-tools by taking advantage of hybrid ECRCVD system. The structure of the DLC films is delineated by a function of bias voltages by Raman spectroscopy. This function includes parameters such as dependence of G peak positions and the intensity ratio (ID/IG). Atomic force microscope (AFM) examines the root-mean-square (R.M.S.) roughness and the surface morphology. Excellent adhesion and lower friction coefficients of a DLC film were also assessed.  相似文献   

11.
Diamond-like carbon (DLC) and Cr-doped diamond-like carbon layers were studied. DLC and Cr-DLC were deposited on silicon and titanium substrates (Ti-6Al-4V) by dual-pulsed laser ablation using two KrF excimer lasers and two targets (graphite and chromium). The composition was analyzed using wavelength-dependent X-ray spectroscopy. The Cr content increased from 2.2 to 17.9 at%. The topology and surface properties as roughness of layers were studied using scanning electron microscopy and atomic force microscopy. With the chromium concentration increased the roughness and the number of droplets. Carbon and chromium bonds were determined by Raman spectroscopy. With an increase in chromium content the I D/I G ratio increased. Mechanical properties of DLC films with various chromium content were evaluated. Hardness (reduced Young’s modulus) was determined by nanoindentation and reached of 51 GPa (309 GPa). Films adhesion was studied using scratch test and with concentration of chromium increased up to 20 N.  相似文献   

12.
Diamond-like carbon films (DLC) were deposited on titanium substrates in acetonitrile and N,N-dimethyl formamide (DMF) liquids by the liquid-phase electrodeposition technique at ambient pressure and temperature. The applied voltage between the electrodes was high (1200 V) due to the use of resistive organic liquids. The surface morphology was examined by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Corrosion performance of the coatings was investigated by potentiodynamic polararization tests in phosphate buffer saline solution. Raman spectroscopy analysis of the films revealed two broad bands at approximately 1360 cm−1 and 1580 cm−1, related to D and G-band of DLC, respectively. The coated Ti was tested in a ball-on-plate type wear test machine with Al2O3 balls. The films presented a low friction coefficient (about 0.1), and the films deposited from DMF presented the best wear resistance.  相似文献   

13.
This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.  相似文献   

14.
Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si3N4, a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.  相似文献   

15.
In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 °C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.  相似文献   

16.
张振宇  路新春  雒建斌 《中国物理》2007,16(12):3790-3797
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp$^{2}$, sp$^{3}$ and C--O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17--21~nm, 30--57~nm, 67--123~nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17--41~nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123~nm.  相似文献   

17.
Evaluation of bacterial adhesion on Si-doped diamond-like carbon films   总被引:1,自引:0,他引:1  
Diamond-like carbon (DLC) films as biomaterial for medical devices have been attracting great interest due to their excellent properties such as hardness, low friction and chemical inertness. It has been demonstrated that the properties of DLC films can be further improved by the addition of silicon into DLC films, such as thermal stability, compressive stress, etc. However no research work on anti-bacterial properties of silicon-doped diamond-like carbon films has been reported. In this paper the surface physical and chemical properties of Si-doped diamond-like carbon films with various Si contents on 316 stainless steel substrate prepared by a magnetron sputtering technique were investigated, including surface topography, surface chemistry, the sp3/sp2 ratio, contact angle, surface free energy, etc. Bacterial adhesion to Si-doped DLC films was evaluated with Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus which frequently cause medical device-associated infections. The experimental results showed that bacterial adhesion decreased with increasing the silicon content in the films. All the Si-doped DLC films performed much better than stainless steel 316L on reducing bacterial attachment.  相似文献   

18.
This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with $I(D)/I(G)$ 0.28 and corresponding to 76{\%} sp$^{3}$ content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at{\%} content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46~nm, coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.  相似文献   

19.
Zinc doped diamond-like carbon (DLC) nanocomposite thin films are fabricated by KrF pulsed laser deposition. Carbon targets containing 3.0, 5.0 and 10.0 atomic percentages of zinc are used as the source for the laser system. Investigation of electrical properties by the four-point probe shows that doping zinc into DLC can lower the electrical sheet resistivity. Microstructural analysis by Raman spectroscopy and XPS show a lower sp3 content but a higher SiC content with an increasing amount of zinc incorporation. The increase of SiC leads to an increase in adhesion strength. Surface roughness of the films also increases while the coefficients of friction for the films do not change.  相似文献   

20.
《Current Applied Physics》2019,19(12):1318-1324
Molybdenum disulfide (MoS2) is widely used in practice due to its excellent lubricating properties. However, research on the tribological properties of magnetron sputtering for depositing MoS2 films remains limited. Herein, the tribological properties of MoS2 films were investigated in detail through a series of characterization and friction coefficient tests. MoS2 films were deposited onto silicon substrates by magnetron sputtering under different radio-frequency powers (Prf). With increased Prf, the crystallinity of the films gradually increases, whereas the friction coefficient initially decreases and then increases. Prf also affects the chemical composition, surface morphology, and grain size of MoS2 films. At Prf = 300 W, the film surface is dense and smooth, the grain distribution is uniform. Moreover, the films have superior tribological properties and low friction coefficient, which can be attributed to the weak van der Waals force among MoS2 layers and the microscopic morphology of the films. All these results indicate that by reasonably controlling the preparation parameters, MoS2 films with excellent tribological properties can be prepared by magnetron sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号