首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd1/TiO2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10–3 s–1,比有文献报道的活性最高的Pd/La-修饰Al2O3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

2.
CO低温氧化对于基础研究和实际应用均具有重要意义.自上世纪八十年代日本的Haruta教授发现氧化物负载金催化剂对CO氧化的超高活性以来,负载金催化剂受到了广泛关注与深入研究,被认为是目前活性最高的CO氧化催化剂.在诸多影响CO氧化活性的因素中,纳米金的粒子尺寸是最重要因素之一.目前主流观点认为对于CO氧化,纳米金有一个最优尺寸范围,在0.5–5 nm,而Au原子/离子(Au~(3+),Au~+)的活性则低一到两个数量级.因此,一般认为负载金单原子催化剂对于CO氧化反应的活性要比金纳米粒子和团簇低很多.然而,最近几年的理论与实验研究均表明,金单原子负载于合适的载体上可以显示出与金纳米粒子和团簇相当的活性.本文对这些新进展进行综述,阐述金单原子催化剂对CO氧化的独特反应性能.Gates教授研究组进行了大量关于正价金对CO氧化影响的研究,其中包括孤立的金原子(Au~+).他们的研究发现,CO氧化活性随价态降低而降低,表明正价金对CO氧化至关重要.此外,他们的研究也表明,孤立金原子对CO氧化的活性(TOF)比金纳米粒子低一到两个数量级.然而,在他们的研究中,有几个因素可能导致催化剂的低活性.首先,他们一般采用非或弱还原性的载体.而载体的还原性对金催化剂上CO氧化活性影响非常巨大.另外,他们所用的金原子前驱体为配合物,在催化剂制备与反应过程中配体并没有去除,可能也是导致催化剂活性低的原因之一.与此相反,张涛课题组近期采用氯金酸为前驱体,通过简单的吸附浸渍法制备了一系列负载金单原子催化剂.同时用相同的载体制备了负载金纳米粒子催化剂进行对比,可以排除载体等其它影响因素.对比结果显示,单原子催化剂均显示出与纳米粒子相当的TOF(单位表面Au原子)和更高的反应速率(单位重量金).首先制备了氧化铁负载金单原子催化剂,该催化剂在室温即展现出可观活性,TOF值与2–3 nm金粒子TOF值相当(~0.5 s–1).更有趣也更重要的是,该催化剂在高温(200 oC以上)展现出非常高的反应稳定性,在200 oC反应100 h无失活.在300和400 oC反应50 h也无失活发生,为开发高温稳定的金催化剂提供了新途径.其次制备了氧化钴负载金单原子催化剂,该催化剂以0.05%金负载量即可实现室温全转化,其TOF值高达1.4 s~(–1).然而该催化剂在达到高活性之前必须首先在反应气氛中进行高温处理,这限制了其实用性.此外,催化剂需经反应气氛活化的原因尚待进一步研究.随之又制备了氧化铈负载金单原子催化剂,对富氢条件下CO选择氧化不仅具有高活性,而且具有极高的CO选择性.进一步研究结合理论计算表明,高选择性来自氧化铈负载的金单原子不能解离活化氢,对于氢气氧化活性极低,从而导致CO氧化的高选择性.理论研究方面也有进展.Camellone等计算发现金原子可以取代Ce O_2(111)面上的Ce原子形成Au~+并促进CO氧化.然而该金原子会扩散至氧空位形成带负电荷的Au~(δ-),阻止CO和O_2吸附,因而使催化剂失活.李隽课题组利用从头算分子动力学模拟首次发现氧化铈和氧化钛负载的Au纳米粒子在CO氧化过程中可以形成单原子的现象,并将之称为动态单原子催化剂.Yang等则计算了二维材料BN负载Au单原子催化CO氧化并发现反应优先通过三原子E-R机理进行.  相似文献   

3.
金单原子催化剂上一氧化碳低温氧化   总被引:1,自引:0,他引:1  
CO低温氧化对于基础研究和实际应用均具有重要意义.自上世纪八十年代日本的 Haruta教授发现氧化物负载金催化剂对 CO氧化的超高活性以来,负载金催化剂受到了广泛关注与深入研究,被认为是目前活性最高的 CO氧化催化剂.在诸多影响 CO氧化活性的因素中,纳米金的粒子尺寸是最重要因素之一.目前主流观点认为对于 CO氧化,纳米金有一个最优尺寸范围,在0.5–5 nm,而 Au原子/离子(Au3+, Au+)的活性则低一到两个数量级.因此,一般认为负载金单原子催
  化剂对于 CO氧化反应的活性要比金纳米粒子和团簇低很多.然而,最近几年的理论与实验研究均表明,金单原子负载于合适的载体上可以显示出与金纳米粒子和团簇相当的活性.本文对这些新进展进行综述,阐述金单原子催化剂对 CO氧化的独特反应性能. Gates教授研究组进行了大量关于正价金对 CO氧化影响的研究,其中包括孤立的金原子(Au+).他们的研究发现, CO氧化活性随价态降低而降低,表明正价金对 CO氧化至关重要.此外,他们的研究也表明,孤立金原子对 CO氧化的活性(TOF)比金纳米粒子低一到两个数量级.然而,在他们的研究中,有几个因素可能导致催化剂的低活性.首先,他们一般采用非或弱还原性的载体.而载体的还原性对金催化剂上 CO氧化活性影响非常巨大.另外,他们所用的金原子前驱体为配合物,在催化剂制备与反应过程中配体并没有去除,可能也是导致催化剂活性低的原因之一.与此相反,张涛课题组近期采用氯金酸为前驱体,通过简单的吸附浸渍法制备了一系列负载金单原子催化剂.同时用相同的载体制备了负载金纳米粒子催化剂进行对比,可以排除载体等其它影响因素.对比结果显示,单原子催化剂均显示出与纳米粒子相当的 TOF(单位表面 Au原子)和更高的反应速率(单位重量金).首先制备了氧化铁负载金单原子催化剂,该催化剂在室温即展现出可观活性, TOF值与2–3 nm金粒子 TOF值相当(~0.5 s–1).更有趣也更重要的是,该催化剂在高温(200oC以上)展现出非常高的反应稳定性,在200oC反应100 h无失活.在300和400oC反应50 h也无失活发生,为开发高温稳定的金催化剂提供了新途径.其次制备了氧化钴负载金单原子催化剂,该催化剂以0.05%金负载量即可实现室温全转化,其 TOF值高达1.4 s–1.然而该催化剂在达到高活性之前必须首先在反应气氛中进行高温处理,这限制了其实用性.此外,催化剂需经反应气氛活化的原因尚待进一步研究.随之又制备了氧化铈负载金单原子催化剂,对富氢条件下 CO选择氧化不仅具有高活性,而且具有极高的 CO选择性.进一步研究结合理论计算表明,高选择性来自氧化铈负载的金单原子不能解离活化氢,对于氢气氧化活性极低,从而导致 CO氧化的高选择性.理论研究方面也有进展. Camellone等计算发现金原子可以取代 CeO2(111)面上的 Ce原子形成 Au+并促进 CO氧化.然而该金原子会扩散至氧空位形成带负电荷的 Auδ-,阻止 CO和 O2吸附,因而使催化剂失活.李隽课题组利用从头算分子动力学模拟首次发现氧化铈和氧化钛负载的 Au纳米粒子在 CO氧化过程中可以形成单原子的现象,并将之称为动态单原子催化剂. Yang等则计算了二维材料 BN负载 Au单原子催化 CO氧化并发现反应优先通过三原子 E-R机理进行.  相似文献   

4.
郝燕  王帅  孙蔷  石磊  陆安慧 《催化学报》2015,(4):612-619
负载型贵金属纳米催化剂中的金属纳米粒子易发生团聚或流失,因此提高金属活性组分的分散性和稳定性很重要。我们报道了一种制备高分散钯纳米催化剂的方法,通过浸泡法将氯钯酸前驱体负载到苯并噁嗪聚合物上,再经过惰性气氛一步热解得到纳米炭球担载钯催化剂.催化剂性能通过温和条件下苯甲醇氧化反应进行评价.经过500℃热处理制备的催化剂,从TEM图可以看出Pd纳米粒子均匀分散在载体上,尺寸大小约为3 nm,这是由于载体和钯活性组分的配位作用有利于提高钯纳米粒子的分散性和稳定性.通过调控金属负载量及负载时间,尽可能地实现活性组分分布在载体外表面,制备的催化剂上最高TOF为690 h-1.此催化剂同时具有较好的循环稳定性,失活后的催化剂经过200℃焙烧即可实现再生.  相似文献   

5.
将孤立的Pd原子分散到ZnO纳米线(NWs)上作为单原子催化剂(SACs),并考察了它们在若干反应中的催化性能.Pd1/ZnO SAC对甲醇蒸汽重整制氢反应表现出高的活性、稳定性和CO2选择性.该催化剂体系对CO和H2的氧化也具有高活性,但在富氢物料中CO优先氧化反应中的催化剂性能较差,这主要是由于在ZnO负载的Pd1原子上H2氧化的强竞争反应所致.常压下在Pd1/ZnO SAC上就可发生逆水汽变换反应.该系列催化反应测试结果清楚地表明,选择合适金属与载体对开发分子催化转化用单原子催化剂至关重要.  相似文献   

6.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的MgAl2O4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在MgAl2O4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/MgAl2O4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60–150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比MgAl2O4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,MgAl2O4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

7.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的Mg Al_2O_4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在Mg Al_2O_4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/Mg Al_2O_4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60-150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比Mg Al_2O_4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,Mg Al_2O_4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

8.
以采用改进的气相沉积法制备的具有规整{1010}晶面的氧化锌纳米线为载体,合成了氧化锌纳米线负载钯催化剂,考察了还原温度和负载量对催化剂表面形成Pd Zn合金过程的影响,并通过适当的后处理过程制备了氧化锌纳米线外延生长Pd Zn纳米粒子催化体系.结果表明,当金属钯负载量较低(质量分数约为2%)时,经400℃还原后的催化剂表面会形成PdxZny(xy)合金,从而影响催化剂的CO选择性;提高钯负载量或还原温度有利于将PdxZny(xy)合金转化为Pd Zn合金,降低CO选择性.负载Pd Zn合金纳米粒子与氧化锌纳米线载体之间外延生长的界面关系使其在甲醇水蒸气重整反应中显示出优异的反应稳定性.  相似文献   

9.
高效负载型Pd催化剂的制备及其在CO低温氧化反应中的机理探究是近年来的研究热点.普遍认为,Pd催化剂上的CO氧化反应遵循Langmuir-Hinshelwood机理:首先,CO吸附于Pd物种表面;然后,CO与催化剂表面的晶格氧发生反应转化为CO2,反应发生在金属-载体界面.另外,高分散的Pd活性物种有利于CO氧化反应.同时载体的形貌、暴露的晶面、氧空位以及孔结构等都是影响催化剂活性的重要因素.CeO2纳米管具有独特的管状特征和较高的比表面积,是一种潜在的CO低温氧化催化剂载体.本文利用乙醇还原法,以CeO2纳米管为载体,制备不同Pd含量的Pd/CeO2-nanotube纳米催化剂,并利用N2吸附脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、CO程序升温脱附(CO-TPD)、X射线光电子能谱(XPS)等表征手段,探索纳米催化剂载体形貌对CO氧化反应活性的影响.氮气吸脱附结果表明,Pd/CeO2-nanotube具有较高的比表面积(58.0 m2/g),且存在介孔结构.XRD表征发现,Pd/CeO2-nanotube的衍射峰对应立方萤石型结构的CeO2的(111),(200),(220),(311)等品面.TEM结果表明,Pd/CeO2-nanotube具有均匀的纳米管形貌,其外径为40-60 nm,Pd纳米颗粒均匀分散在其表面.CO-TPD结果表明,Pd/CeO2-nanotube在1 10℃附近具有很强的脱附峰,在370℃和600℃附近分别具有较宽和较弱的脱附峰,这表明该催化剂具有较多的吸附位,且具有很强的CO吸附能力;CO不可逆吸附量计算结果表明,该催化剂上的Pd具有很高的表面分散度(23.3%),Pd颗粒尺寸为7.3 nm.XPS表征显示,Pd以pd2+的形式分散于CeO2纳米管的表面,且与载体发生相互作用,存在Pd-O-Ce键;同时该催化剂表面存在丰富的Ce3+,为反应提供更多的氧空位.0.9Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性,能在100℃实现CO的完全转化;通过计算发现,该催化剂具有较高的TOF值(0.63 s-1),由Arrhenius 曲线可得到该催化剂的活化能为26.5 kJ/mol.综上可见:金属活性组分的尺寸和分散度、载体的结构特征、CO吸附能力以及金属-载体间的相互作用决定催化剂的性能.Pd/CeO2-nanotube的高比表面积有利于Pd的分散;其强CO吸附能力有利于CO吸附于Pd物种表面;催化剂表面丰富的Ce3+能为反应提供更多的氧空位,Pd-O-Ce键的形成能增强金属-载体间的相互作用,有利于CO与催化剂表面品格氧发生反应.同时催化剂介孔结构有利于反应气体和产物气体的吸附和扩散,因此,Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性.  相似文献   

10.
高效负载型Pd催化剂的制备及其在CO低温氧化反应中的机理探究是近年来的研究热点.普遍认为,Pd催化剂上的CO氧化反应遵循Langmuir-Hinshelwood机理:首先,CO吸附于Pd物种表面;然后,CO与催化剂表面的晶格氧发生反应转化为CO_2,反应发生在金属-载体界面.另外,高分散的Pd活性物种有利于CO氧化反应.同时载体的形貌、暴露的晶面、氧空位以及孔结构等都是影响催化剂活性的重要因素.CeO_2纳米管具有独特的管状特征和较高的比表面积,是一种潜在的CO低温氧化催化剂载体.本文利用乙醇还原法,以CeO_2纳米管为载体,制备不同Pd含量的Pd/CeO_2-nanotube纳米催化剂,并利用N_2吸附脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、CO程序升温脱附(CO-TPD)、X射线光电子能谱(XPS)等表征手段,探索纳米催化剂载体形貌对CO氧化反应活性的影响.氮气吸脱附结果表明,Pd/CeO_2-nanotube具有较高的比表面积(58.0 m~2/g),且存在介孔结构.XRD表征发现,Pd/CeO_2-nanotube的衍射峰对应立方萤石型结构的CeO_2的(111),(200),(220),(311)等晶面.TEM结果表明,Pd/CeO_2-nanotube具有均匀的纳米管形貌,其外径为40-60 nm,Pd纳米颗粒均匀分散在其表面.CO-TPD结果表明,Pd/CeO_2-nanotube在110℃附近具有很强的脱附峰,在370℃和600℃附近分别具有较宽和较弱的脱附峰,这表明该催化剂具有较多的吸附位,且具有很强的CO吸附能力;CO不可逆吸附量计算结果表明,该催化剂上的Pd具有很高的表面分散度(23.3%),Pd颗粒尺寸为7.3 nm.XPS表征显示,Pd以Pd~(2+)的形式分散于CeO_2纳米管的表面,且与载体发生相互作用,存在Pd-O-Ce键;同时该催化剂表面存在丰富的Ce~(3+),为反应提供更多的氧空位.0.9Pd/CeO_2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性,能在100℃实现CO的完全转化;通过计算发现,该催化剂具有较高的TOF值(0.63s~(-1)),由Arrhenius曲线可得到该催化剂的活化能为26.5 kJ/mol.综上可见:金属活性组分的尺寸和分散度、载体的结构特征、CO吸附能力以及金属-载体间的相互作用决定催化剂的性能Pd/CeO_2-nanotube的高比表面积有利于Pd的分散;其强CO吸附能力有利于CO吸附于Pd物种表面;催化剂表面丰富的Ce~(3+)能为反应提供更多的氧空位,Pd-O-Ce键的形成能增强金属-载体间的相互作用,有利于CO与催化剂表面晶格氧发生反应.同时催化剂介孔结构有利于反应气体和产物气体的吸附和扩散,因此,Pd/CeO_2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性.  相似文献   

11.
CO低温氧化是多相催化领域研究最多的反应之一.作为简单、典型的探针反应,其不仅具有重要的基础研究价值,而且在环境污染消除等方面也有着非常重要的实际应用价值.金属氧化物如铜锰(Hopcalite)、铜铬复合氧化物以及氧化钴等都具有优异的低温CO氧化活性.然而氧化物催化剂热稳定性低、反复启动性能差、以及对硫化物、水等物质敏感,严重制约了其实际应用.相对而言,负载型贵金属催化剂因具有较高的CO氧化活性、反应稳定性以及热稳定性而受到关注.但是贵金属价格昂贵、资源稀少,使其持续应用面临严峻挑战.为了提高贵金属利用效率、降低贵金属使用量,在负载型贵金属催化剂中,贵金属多以纳米尺度分散于高比表面载体上.由于多相催化一般在纳米粒子表面发生,只有表面金属原子能够接触到反应物,因而贵金属原子利用率仍然有待提高.最近本课题组成功开发以原子级分散的单原子催化剂并提出“单原子催化”的概念.后续研究以及其他研究人员相继证明氧化物负载贵金属单原子具有高活性和/或不同于纳米粒子的反应性能,表明开发单原子催化剂是最大化贵金属利用效率、降低贵金属用量的可行途径.对于CO氧化而言,目前普遍认为负载Au催化剂具有最高活性.然而负载Au单原子催化剂是否具有活性仍存争议:理论计算表明氧化物负载Au单原子催化剂具有很好的活性,但是缺少实验证据;目前已有一些氧化物负载Au正价离子催化剂的报道,结果也都表明Au单原子活性远低于纳米粒子或纳米团簇.最近本课题组发现氧化铁负载Au单原子不仅具有与Au纳米粒子相当的单位活性位(TOF)活性而且具有更高的单位金属重量(反应速率)活性以及非常高的反应稳定性.本文将载体拓展到氧化钴,开发了具有更高活性的氧化钴负载Au单原子催化剂, Au负载量仅为0.05 wt%即可在室温条件下实现CO完全转化. Co3O4载体用Co(NO3)3与Na2CO3通过共沉淀法制备,400 oC焙烧.然后通过简单的沉淀吸附法制备Co3O4负载Au单原子催化剂(Au1/Co3O4),确保Au单原子能够分散于载体的表面.具有原子分辨率的球差校正高分辨电镜照片显示Au原子确实以单原子形式分散于载体上.催化剂在第一个循环中活性并不非常高,但是在第二个循环中活性提高非常明显,可以在室温条件下实现CO全转化.为了弄清楚活性提高的原因,我们用惰性气体(He)、氧化性气体(5%O2/He)以及还原性气体(5%CO/He)对催化剂进行了热处理,但是活性提高并不明显.由此推断催化剂是在第一个循环反应过程中发生了某些变化,导致活性显著提高.空白载体实验表明Co3O4载体本身虽然具有反应活性,但是远不如负载少量Au原子活性高,表明Au原子或Au原子与载体一起起到高活性的作用.稳定性研究表明该催化剂在室温条件下容易失活,但经惰性气体或氧化气体处理后活性可恢复,表明不是结构性失活而是可逆失活,说明单原子非常稳定.  相似文献   

12.
CO低温氧化是多相催化领域研究最多的反应之一.作为简单、典型的探针反应,其不仅具有重要的基础研究价值,而且在环境污染消除等方面也有着非常重要的实际应用价值.金属氧化物如铜锰(Hopcalite)、铜铬复合氧化物以及氧化钴等都具有优异的低温CO氧化活性.然而氧化物催化剂热稳定性低、反复启动性能差、以及对硫化物、水等物质敏感,严重制约了其实际应用.相对而言,负载型贵金属催化剂因具有较高的CO氧化活性、反应稳定性以及热稳定性而受到关注.但是贵金属价格昂贵、资源稀少,使其持续应用面临严峻挑战.为了提高贵金属利用效率、降低贵金属使用量,在负载型贵金属催化剂中,贵金属多以纳米尺度分散于高比表面载体上.由于多相催化一般在纳米粒子表面发生,只有表面金属原子能够接触到反应物,因而贵金属原子利用率仍然有待提高.最近本课题组成功开发以原子级分散的单原子催化剂并提出"单原子催化"的概念.后续研究以及其他研究人员相继证明氧化物负载贵金属单原子具有高活性和/或不同于纳米粒子的反应性能,表明开发单原子催化剂是最大化贵金属利用效率、降低贵金属用量的可行途径.对于CO氧化而言,目前普遍认为负载Au催化剂具有最高活性.然而负载Au单原子催化剂是否具有活性仍存争议:理论计算表明氧化物负载Au单原子催化剂具有很好的活性,但是缺少实验证据;目前已有一些氧化物负载Au正价离子催化剂的报道,结果也都表明Au单原子活性远低于纳米粒子或纳米团簇.最近本课题组发现氧化铁负载Au单原子不仅具有与Au纳米粒子相当的单位活性位(TOF)活性而且具有更高的单位金属重量(反应速率)活性以及非常高的反应稳定性.本文将载体拓展到氧化钴,开发了具有更高活性的氧化钴负载Au单原子催化剂,Au负载量仅为0.05 wt%即可在室温条件下实现CO完全转化.Co3O4载体用Co(NO3)3与Na2CO3通过共沉淀法制备,400 oC焙烧.然后通过简单的沉淀吸附法制备Co3O4负载Au单原子催化剂(Au1/Co3O4),确保Au单原子能够分散于载体的表面.具有原子分辨率的球差校正高分辨电镜照片显示Au原子确实以单原子形式分散于载体上.催化剂在第一个循环中活性并不非常高,但是在第二个循环中活性提高非常明显,可以在室温条件下实现CO全转化.为了弄清楚活性提高的原因,我们用惰性气体(He)、氧化性气体(5%O2/He)以及还原性气体(5%CO/He)对催化剂进行了热处理,但是活性提高并不明显.由此推断催化剂是在第一个循环反应过程中发生了某些变化,导致活性显著提高.空白载体实验表明Co3O4载体本身虽然具有反应活性,但是远不如负载少量Au原子活性高,表明Au原子或Au原子与载体一起起到高活性的作用.稳定性研究表明该催化剂在室温条件下容易失活,但经惰性气体或氧化气体处理后活性可恢复,表明不是结构性失活而是可逆失活,说明单原子非常稳定.  相似文献   

13.
在许多催化应用中双金属的Pd Au催化剂性能优于单金属催化剂.科研人员对具有可控纳米结构和高活性的Pd Au催化剂进行了广泛的研究,但该催化剂的制备需要多步且通常步骤复杂.本文仅通过浸渍和焙烧制得了Au掺杂的负载型Pd催化剂,所得Pd Au/C催化剂用于室温水相三氯乙烯加氢脱氯反应.当Pd和Au负载量分别为1.0 wt%和1.1 wt%时,在经过干燥、空气处理和H_2还原的过程后,所制得的Pd Au/C催化剂活性最高,初始转化频率(TOF)为34.0×10~(–2) mol_(TCE) mol~(–1)Pd s~(–1),是单金属1.0 wt%Pd/C催化剂TOF(2.2×10~(–2) mol_(TCE) mol~(–1)Pd s~(–1))的15倍以上.X射线吸收光谱结果表明,金的加入避免了400 oC焙烧时Pd的氧化.本文还提出了可能的催化剂纳米结构演变路径,以解释所观察到的催化现象.  相似文献   

14.
采用浸渍法和溶胶负载法制备了一系列Au-Pd双金属催化剂,用氮吸附法,X光粉末衍射(XRD)、程序升温还原(TPR),扫描电镜(SEM)和X射线光电子能谱(XPS)对催化剂进行了表征.以分子氧为氧化剂,在无任何其它溶剂存在的条件下,考察了催化剂制备方法、不同类型载体、Au/Pd原子比、浸渍顺序、活化温度、催化剂用量及反应时间等多种因素对甲苯选择氧化反应的影响.实验结果表明:对SiO_2载体,以共浸渍法制备的催化剂活性和选择性最好;TiO_2载体,以溶胶负载法制备的催化剂活性和选择性较好;Au Pd双金属催化剂比单金或者单钯催化剂具有更好的催化活性.其中Au Pd/SiO_2-I催化剂使甲苯转化率达到56.8%,苯甲酸苄酯的选择性为9 1.3%,TON值为3692.Au Pd/SiO_2-I催化剂中氧化态的钯和零价金更利于催化剂中的电子传递从而利于催化氧化反应的进行.  相似文献   

15.
Pd/SAPO-34催化剂上CO低温氧化反应   总被引:1,自引:0,他引:1  
 采用水热法合成了小晶粒的 SAPO-34, MnSAPO-34 和 CuSAPO-34 分子筛, 并以它们为载体采用浸渍法制备了一系列不同 Pd 含量的催化剂用于催化 CO 氧化反应. 结果表明: 分子筛载体、催化剂制备条件、反应条件、Pd 含量及预还原等对催化剂的活性影响较大. 催化剂活性随焙烧温度的增加而降低, 而随着反应温度的升高而提高, 担载在 SAPO-34 上 Pd 含量为 1.35% 时性能最佳. X射线衍射和透射电镜结果表明 Pd 物种高度分散于催化剂上, 粒子粒径在 2~8 nm; X射线光电子能谱及氢气程序升温还原结果表明, 高度分散的 Pd2+ 物种是 CO 氧化反应活性位. 随着反应进行被还原为 Pd0 物种, 因而导致催化剂活性下降. H2 预还原处理催化剂致使活性下降的实验结果也支持了这一结论.  相似文献   

16.
采用共沉淀法制备了一系列不同Pd含量的PdO-CeO2复合氧化物催化剂, 并考察了该催化剂的CO低温氧化反应催化性能. 运用X射线衍射(XRD), 物理吸附(BET), CO化学吸附, 程序升温还原(TPR), 脉冲反应等技术对催化剂进行了表征. XRD结果表明, 焙烧温度从400 ℃升高到800 ℃, 有利于CexPd1-xO2-δ固溶体的形成. 然而焙烧温度升至1000 ℃时, 导致Pd从固溶体中析出. 催化剂的CO氧化活性(TOF)与CexPd1-xO2-δ固溶体的含量存在一定的对应关系. 随着CexPd1-xO2-δ固溶体含量的增加, CO氧化的TOF值大, 可见CexPd1-xO2-δ固溶体的形成对CO氧化活性有着主要的贡献. 在催化剂焙烧温度相同的条件下, 催化剂的CO氧化活性与Pd粒子大小无对应关系. 脉冲反应进一步说明PdOx的CO氧化活性高于金属Pd.  相似文献   

17.
PdO-CeO2复合氧化物催化剂的CO低温氧化   总被引:1,自引:0,他引:1  
采用共沉淀法制备了一系列不同Pd含量的PdO-CeO2复合氧化物催化剂,并考察了该催化剂的CO低温氧化反应催化性能.运用X射线衍射(XRD),物理吸附(BET),CO化学吸附,程序升温还原(TAR),脉冲反应等技术对催化剂进行了表征.XRD结果表明,焙烧温度从400 ℃升高到800℃,有利于CexPd1-xO2-δ固溶体的形成.然而焙烧温度升至1000℃时,导致Pd从固溶体中析出.催化剂的CO氧化活性(TOF)与CexPd1-xO2-δ固溶体的含量存在一定的对应关系.随着CexPd,1-xO2-δ固溶体含量的增加,CO氧化的TOF值大,可见CexPd1-xO2-δ固溶体的形成对CO氧化活性有着主要的贡献.在催化剂焙烧温度相同的条件下,催化剂的CO氧化活性与Pd粒子大小无对应关系.脉冲反应进一步说明PdOx的CO氧化活性高于金属Pd.  相似文献   

18.
利用溶液法结合高温煅烧处理合成MgO载体,通过浸渍法制备Pd/MgO催化剂并对其进行CO氧化偶联制草酸二甲酯催化性能研究。通过X射线粉末衍射、CO2程序升温脱附、比表面仪、热重分析、扫描电镜、透射电镜和微型催化评价装置对合成的样品进行结构和性能表征。结果表明,合成的MgO载体是一种Lewis碱性很强的纳米片结构,Pd纳米颗粒高度分散在MgO载体上,粒径小且分布均一。此MgO纳米片作为载体制备的Pd/MgO催化剂在较低的Pd负载量(0.5%)下表现出优异的CO氧化偶联催化性能,在反应温度130℃时CO单程转化率高达65%,草酸二甲酯选择性96%,稳定性超过100 h,明显越于工业催化剂(Pd/α-Al2O3),具有潜在的工业应用前景。  相似文献   

19.
在许多催化应用中双金属的PdAu催化剂性能优于单金属催化剂.科研人员对具有可控纳米结构和高活性的PdAu催化剂进行了广泛的研究,但该催化剂的制备需要多步且通常步骤复杂.本文仅通过浸渍和焙烧制得了Au掺杂的负载型Pd催化剂,所得PdAu/C催化剂用于室温水相三氯乙烯加氢脱氯反应.当Pd和Au负载量分别为1.0 wt%和1.1 wt%时,在经过干燥、空气处理和H2还原的过程后,所制得的PdAu/C催化剂活性最高,初始转化频率(TOF)为34.0×10–2 molTCEmolPd–1 s–1,是单金属1.0 wt%Pd/C催化剂TOF (2.2×10–2 molTCEmolPd–1 s–1)的15倍以上. X射线吸收光谱结果表明,金的加入避免了400oC焙烧时Pd的氧化.本文还提出了可能的催化剂纳米结构演变路径,以解释所观察到的催化现象.  相似文献   

20.
单层分散型Pd/Ni双金属催化剂的制备及其催化加氢性能   总被引:1,自引:0,他引:1  
通过置换反应制备了Pd/Ni双金属催化剂,利用X射线衍射、CO化学吸附和吸附H2的程序升温脱附对其进行了表征,并测定了该催化剂对环己烯、苯乙烯和丙酮气相加氢反应的催化性能.结果发现,在这种催化剂中Pd原子单层分散在金属Ni的表面,因而该催化剂表现出比浸渍法制备的相同Pd含量的Pd/Ni-im和Pd/-γAl2O3催化剂更高的催化加氢活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号