首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical economic order quantity (EOQ) model assumes that items produced are of perfect quality and that the unit cost of production is independent of demand. However, in realistic situations, product quality is never perfect, but is directly affected by the reliability of the production process. In this paper, we consider an EOQ model with imperfect production process and the unit production cost is directly related to process reliability and inversely related to the demand rate. In addition, a numerical example is given to illustrate the developed model. Sensitivity analysis is also performed and discussed.  相似文献   

2.
Lin [T.Y. Lin, An economic order quantity with imperfect quality and quantity discounts, Appl. Math. Model. 34 (10) (2010) 3158–3165] recently proposed an EOQ model with imperfect quality and quantity discounts, where the lot-splitting shipments policy is adopted. In this note we first rectify the holding cost terms showed in Lin to obtain a new objective function, then resolve the problem and develop an easy to implement algorithm to find the overall optimal solutions for the model. Besides, we present a new model for items with imperfect quality, where lot-splitting shipments and different holding costs for good and defective items are considered. The closed-form formulas for determining the optimal ordering and shipping policies are derived. Also, the results are examined analytically and numerically to gain more insights of the solutions.  相似文献   

3.
传统的库存控制模型都视需求率为固定不变的,放松了这个假定,通过考虑库存费为存储时间的阶梯函数的情形:(1)全单位库存费用,(2)增量库存费用,并且在需求率依赖于库存水平,当库存水平下降到一定程度时,需求率变为常数的形式下,把变化的订购费引入,发展了两个离散性库存费的变质物品的库存控制模型。在模型中允许周期末库存水平不为零,并且提出了最优解的算法。  相似文献   

4.
This paper develops exact and heuristic algorithms for a stochastic knapsack problem where items with random sizes may be assigned to a knapsack. An item’s value is given by the realization of the product of a random unit revenue and the random item size. When the realization of the sum of selected item sizes exceeds the knapsack capacity, a penalty cost is incurred for each unit of overflow, while our model allows for a salvage value for each unit of capacity that remains unused. We seek to maximize the expected net profit resulting from the assignment of items to the knapsack. Although the capacity is fixed in our core model, we show that problems with random capacity, as well as problems in which capacity is a decision variable subject to unit costs, fall within this class of problems as well. We focus on the case where item sizes are independent and normally distributed random variables, and provide an exact solution method for a continuous relaxation of the problem. We show that an optimal solution to this relaxation exists containing no more than two fractionally selected items, and develop a customized branch-and-bound algorithm for obtaining an optimal binary solution. In addition, we present an efficient heuristic solution method based on our algorithm for solving the relaxation and empirically show that it provides high-quality solutions.  相似文献   

5.
The paper investigates an EPL (Economic Production Lotsize) model in an imperfect production system in which the production facility may shift from an ‘in-control’ state to an ‘out-of-control’ state at any random time. The basic assumption of the classical EPL model is that 100% of produced items are perfect quality. This assumption may not be valid for most of the production environments. More specifically, the paper extends the article of Khouja and Mehrez [Khouja, M., Mehrez, A., 1994. An economic production lot size model with imperfect quality and variable production rate. Journal of the Operational Research Society 45, 1405–1417]. Generally, the manufacturing process is ‘in-control’ state at the starting of the production and produced items are of conforming quality. In long-run process, the process shifts from the ‘in-control’ state to the ‘out-of-control’ state after certain time due to higher production rate and production-run-time.The proposed model is formulated assuming that a certain percent of total product is defective (imperfect), in ‘out-of-control’ state. This percentage also varies with production rate and production-run time. The defective items are restored in original quality by reworked at some costs to maintain the quality of products in a competitive market. The production cost per unit item is convex function of production rate. The total costs in this investment model include manufacturing cost, setup cost, holding cost and reworking cost of imperfect quality products. The associated profit maximization problem is illustrated by numerical examples and also its sensitivity analysis is carried out.  相似文献   

6.
Many trip distribution problems can be modeled as entropy maximization models with quadratic cost constraints. In this paper, the travel costs per unit flow between different zones are assumed to be given fuzzy variables and the trip productions at origins and trip attractions at destinations are assumed to be given random variables. For this case, an entropy maximization model with chance constraint is proposed, and is proved to be convex. In order to solve this model, fuzzy simulation, stochastic simulation and a genetic algorithm are integrated to produce a hybrid intelligent algorithm. Finally, a numerical example is presented to demonstrate the application of the model and the algorithm.  相似文献   

7.
Chang [1] [H.-C. Chang, A comprehensive note on: an economic order quantity with imperfect quality and quantity discounts, Appl. Math. Model. 35 (10) (2011) 5208-5216] corrects a flaw in Lin’s inventory model [T.Y. Lin, An economic order quantity with imperfect quality and quantity discounts, Appl. Math. Model. 34 (10) (2010) 3158–3165]. Then, he develops an algorithm to find the optimal solution for the corrected Lin’s inventory model and furthermore derives close form expressions to determining the optimal solution to an EOQ inventory model considering items with imperfect quality with different holding costs for good and defective items. In both models there is a discrete variable and he presents some inequalities in order to find the integer value. This paper provides some simple formulas to obtain, in an easy way, the integral value for the discrete variable.  相似文献   

8.
The assumptions required to justify the use of the economic order quantity model (EOQ) are rarely met. To provide mathematical models that more closely represent real-life situations, these assumptions must be relaxed. Among these assumptions are, first, items stocked are of perfect quality, and second, they preserve their characteristics during their stay in inventory. This paper considers a modified EOQ-type inventory model for a deteriorating item with unreliable supply. That is, a percentage of the on-hand inventory is wasted due to deterioration. Moreover, orders may contain a random proportion of defective items, which follow a known distribution. As soon as an order is received, a retailer conducts a screening process to identify imperfect quality items, which are salvaged as a single batch at the end of the screening process. First, a mathematical model is developed, assuming that no shortages are allowed. For that, it is assumed that the inventory level when placing an order is just enough to cover the demand during the screening period. The concavity of the profit function is established and sensitivity analysis is provided to analyze the impact of changing various model parameters on the optimal order quantity and profit. Then, the assumption of no shortages is relaxed, and a model is developed to incorporate backorders. We analyze the model with backorders numerically and provide managerial insights.  相似文献   

9.
This paper considers a production/inventory system where items produced/purchased are of different qualities: Types A and B. Type A items are of perfect quality, and Type B items are of imperfect quality; but not necessarily defective; and have a lower selling price. The percentage of Type A (the yield rate) is assumed to be a random variable with known probability distribution. The electronics industry gives good examples of such situations. We extend the classical single period (newsvendor) and the economic order quantity (EOQ) models by accounting for random supply and for imperfect quality (Type B) items which are assumed to have their own demand and cost structure. We develop mathematical models and prove concavity of the expected profit function for both situations. We also present detailed analysis and numerical results. We focus on comparing the profitability of the novel proposed models with models from the literature (and derivatives of these models) that develop the optimal order quantity based on the properties of Type A items only (and ignore Type B items). We find that accounting for Type B items can significantly improve profitability.  相似文献   

10.
We consider the problem of determining lot sizes of multiple items that are manufactured by a single capacitated facility. The manufacturing facility may represent a bottleneck processing activity on the shop floor or a storeroom that provides components to the shop floor. Items flow from the facility to a downstream facility, where they are assembled according to a specified mix. Just-in-time (JIT) manufacturing requires a balanced flow of items, in the proper mix, between successive facilities. Our model determines lot sizes of the various items based on available capacity and four attributes of each item: demand rate, holding cost, set-up time and processing time. Holding costs for each item accrue until the appropriate mix of items is available for shipment downstream. We develop a lot-sizing heuristic that minimizes total holding cost per time unit over all items, subject to capacity availability and the required mix of items.  相似文献   

11.
Most researchers established their inventory lot-size models under trade credit financing by assuming that the supplier offers the retailer fully permissible delay in payments and the products received are all non-defective. However, in the real business environment, it often can be observed that the supplier offers the retailer a fully permissible delay in payments only when the order quantity is greater than or equal to the predetermined quantity Q d . In addition, an arriving order lot usually contains some defective items due to imperfect production processes or other factors. To capture this reality, the paper extends Huang (2007) economic order quantity (EOQ) model with partially permissible delay in payments to consider defective items. We formulate the proposed problem as a profit maximization EOQ model in which the replenishment cycle time is the decision variable. Then we use the arithmetic-geometric mean inequality approach to determine the optimal solution under various situations. An algorithm to obtain the optimal solution is also provided. Finally, the numerical examples and sensitivity analysis are given to illustrate the results.  相似文献   

12.
This paper derives the optimal replenishment policy for imperfect quality economic manufacturing quantity (EMQ) model with rework and backlogging. The classic EMQ model assumes that all items produced are of perfect quality. However, in real‐life manufacturing settings, generation of imperfect quality items is almost inevitable. In this study, a random defective rate is assumed. All items produced are inspected and the defective items are classified as scrap and repairable. A rework process is involved in each production run when regular manufacturing process ends, and a rate of failure in repair is also assumed. Unit disposal cost and unit repairing and holding costs are included in our mathematical modelling and analysis. The renewal reward theorem is employed in this study to cope with the variable cycle length. The optimal replenishment policy in terms of lot‐size and backlogging level that minimizes expected overall costs for the proposed imperfect quality EMQ model is derived. Special cases of the model are identified and discussed. Numerical example is provided to demonstrate its practical usage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an entropic version of an EOQ model with imperfect quality items. The approach adopted herein models the commodity flow (demand rate) as a heat flow in a thermodynamic system. As a result, an entropy cost term is added to the classical inventory cost to form an entropic total inventory cost function. This provides an estimation of the hidden or difficult to estimate cost inventory systems that usually are the result of disorder (or entropy). A mathematical model is developed with numerical results presented and discussed.  相似文献   

14.
We consider a variant of the economic order quantity (EOQ) model. Mainly, we assume that demand occurs at random, one unit at a time, and is characterized by independent and identically distributed times between two demand epochs. We also assume that the ordering policy is characterized by ordering the same amount whenever the inventory level drops to zero, and a demand occurs. Surprisingly, we show that the optimal order quantity that minimizes the expected inventory cost follows the familiar EOQ formula.  相似文献   

15.
In 1985, Goyal developed an Economic order quantity (EOQ) model under conditions of permissible delay in payments. Jamal et al. then generalized Goyal’s model for deteriorating items with completely backlogging. However, they only ran several simulations to indicate that the total relevant cost may be convex. Recently, Teng amended Goyal’s model by considering the difference between unit price and unit cost, and provided an alternative conclusion that it makes economic sense for some retailers to order less quantity and take the benefits of the permissible delay more frequently. However, he did not consider deteriorating items and partial backlogging. In this paper, we establish a general EOQ model for deteriorating items when the supplier offers a permissible delay in payments. For generality, our model allows not only the partial backlogging rate to be related to the waiting time but also the unit selling price to be larger than the unit purchase cost. Consequently, the proposed model includes numerous previous models as special cases. In addition, we mathematically prove that the total relevant cost is strictly pseudo-convex so that the optimal solution exists and is unique. Finally, our computational results reveal six managerial phenomena.  相似文献   

16.
This article considers a production-inventory system consisting of a single imperfect unreliable machine. The items manufactured by the system are either perfect items or imperfect items, which require a rework to be restored to perfect quality. The rework rate is permitted to be different from the production rate if the rework process is different from the main manufacturing process. The fraction of the number of imperfect items is random following a general distribution function. The time to failure of the machine is random, following a general distribution function. If the machine fails before the lot is completed, the production is interrupted and the machine repair is started immediately. A random machine repair time is assumed, with a general distribution function. Unlike a common assumption in the literature, after the repair of the machine is completed, the production resumes. During the machine repair, a shortage can occur. A single-variable expected average cost function is derived to find the optimal lot size. Because of the complexity in the model, the ABC heuristic is proposed and implemented to find a near optimal value for the lot size. The article also provides a sensitivity analysis of the model's key parameters. It has been observed that the lot interruption-resumption policy leads to smaller lot sizes.  相似文献   

17.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

18.
Facing to imperfect quality and fuzzy random market demand in the real-life inventory management, a two-echelon supply chain system with one retailer and one manufacturer for perishable products is considered. Two fuzzy random models for the newsboy problem with imperfect quality in the decentralized and centralized systems are presented. The expectation theory and signed distance are employed to transform the fuzzy random model into crisp model. The optimal policies in the two decision-making systems are derived and analyzed contrastively. The theoretical analysis shows that manufacturer’s repurchase strategy can achieve the increase in the whole supply chain profit. The influence of the fuzzy randomness of the demand and the defective rate on the optimal order quantity, the whole supply chain profit and the repurchasing price is analyzed via numerical examples.  相似文献   

19.
We propose to study a EOQ-type inventory model with unreliable supply, with each order containing a random proportion of defective items. Every time an order is received, an acceptance sampling plan is applied to the lot, according to which only a sample is inspected instead of the whole lot. If the sample conforms to the standards, i.e. if the number of imperfect items is below an “acceptance number”, no further screening is performed. Otherwise, the lot is subject to 100% screening. We formulate an integer non-linear mathematical program that integrates inventory and quality decisions into a unified profit model, to jointly determine the optimal lot size and optimal sampling plan, characterized by a sample size, and an acceptance number. The optimal decisions are determined in a way to achieve a certain average outgoing quality limit (AOQL), which is the highest proportion of defective items in the outgoing material sold to customers. We provide a counter-example demonstrating that the expected profit function, objective of the mathematical program, is not jointly concave in the lot and sample size. However, we show that for a given sampling plan, the expected profit function is concave in the lot size. A solution procedure is presented to compute the optimal solution. Numerical analysis is provided to gain managerial insights by analyzing the impact of changing various model parameters on the optimal solution. We also show numerically that the optimal profit determined using this model is significantly higher when compared to the optimal profit obtained using Salameh and Jaber (2000)’s [1] model, indicating much higher profits when acceptance sampling is used.  相似文献   

20.
针对实际库存管理中的产品缺陷问题,研究了含随机模糊缺陷率且允许缺货的经济订购批量(EOQ)模型,并运用随机模糊理论将其转化为确定模型,设计了随机模糊模拟仿真算法进而确定了其最优订购策略.数值算例分析了缺陷率对最优订货量和最优利润的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号