首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An inventory model with reliability in an imperfect production process   总被引:1,自引:0,他引:1  
The paper analyzes an economic manufacturing quantity (EMQ) model with price and advertising demand pattern in an imperfect production process under the effect of inflation. If the machine goes through a long-run process, it may shift from in-control state to out-of-control state. As a result, the system produces imperfect items. The imperfect items are reworked at a cost to make it as new. The production of imperfect quality items increases with time. To reduce the production of the imperfect items, the systems have to more reliable and the produced items depend on the reliability of the machinery system. In this direction, the author considers that the development cost, production cost, material cost are dependent on reliability parameter. Considering reliability as a decision variable, the author constructs an integrated profit function which is maximized by control theory. A numerical example along with graphical representation and sensitivity analysis are provided to illustrate the model.  相似文献   

2.
The paper develops a model to determine the optimal product reliability and production rate that achieves the biggest total integrated profit for an imperfect manufacturing process. The basic assumption of the classical Economic Manufacturing Quantity (EMQ) model is that all manufacturing items are of perfect quality. The assumption is not true in practice. Most of the production system produces perfect and imperfect quality items. In some cases the imperfect quality (non conforming) items are reworked at a cost to restore its quality to the original one. Rework cost may be reduced by improvements in product reliability (i.e., decreasing in product reliability parameter). Lower value of product reliability parameter results in increase development cost of production and also smaller quantity of nonconforming products. The unit production cost is a function of product reliability parameter and production rate. As a result, higher development cost increases unit production cost. The problem of optimal planning work and rework processes belongs to the broad field of production–inventory model which deals with all kinds of reuse processes in supply chains. These processes aim to recover defective product items in such a way that they meet the quality level of ‘good item’. The benefits from imperfect quality items are: regaining the material and value added on defective items and improving the environment protection. In this point of view, a model is introduced here to guide a firm/industry in addressing variable product reliability factor, variable unit production cost and dynamic production rate for time-varying demand. The paper provides an optimal control formulation of the problem and develops necessary and sufficient conditions for optimality of the dynamic variables. In this purpose, the Euler–Lagrange method is used to obtain optimal solutions for product reliability parameter and dynamic production rate. Finally, numerical examples are given to illustrate the proposed model.  相似文献   

3.
The paper considers scheduling of inspections for imperfect production processes where the process shift time from an ‘in-control’ state to an ‘out-of-control’ state is assumed to follow an arbitrary probability distribution with an increasing failure (hazard) rate and the products are sold with a free repair warranty (FRW) contract. During each production run, the process is monitored through inspections to assess its state. If at any inspection the process is found in ‘out-of-control’ state, then restoration is performed. The model is formulated under two different inspection policies: (i) no action is taken during a production run unless the system is discovered in an ‘out-of-control’ state by inspection and (ii) preventive repair action is undertaken once the ‘in-control’ state of the process is detected by inspection. The expected sum of pre-sale and post-sale costs per unit item is taken as a criterion of optimality. We propose a computational algorithm to determine the optimal inspection policy numerically, as it is quite hard to derive analytically. To ease the computational difficulties, we further employ an approximate method which determines a suboptimal inspection policy. A comparison between the optimal and suboptimal inspection policies is made and the impact of FRW on the optimal inspection policy is investigated in a numerical example.  相似文献   

4.
This paper presents the problem of setting inspection schedules for a single imperfect facility undergoing minimal repair once detected in an ‘out-of-control’ state. The problem is modelled under a non-Markovian failure mechanism with increasing failure rate. We show that the profit maximization formulation of the problem is equivalent to the cost minimization formulation and concentrate on the latter. We then develop three heuristic procedures that are shown to be very cost effective based on the results of the numerical examples used for illustration.  相似文献   

5.
This study considers imperfect production processes that require production correction and maintenance. Two states of the production process are performed, namely: the type I state (out-of-control state) and the type II state (in-control state). At the beginning of the production of the each renewal cycle, the state of the process is assumed not always to be restored to “in-control”. The type I state involves the adjustment of the production mechanism, whereas the type II state does not. Production correction is either imperfect; worsening a production system, or perfect, returning it to “in-control”. After N + 1 type I states, the operating system must be maintained and returned to the beginning condition. The mean loss cost due to reproduction through production correction per the total expected cost until the N + 1 type I states are entered successively is determined. The existence of a unique and finite optimal N for an imperfect process under certain reasonable conditions is shown. A numerical example is presented.  相似文献   

6.
Chuang-Chun Chiou  L. Ho-Chun Chen 《PAMM》2007,7(1):2060077-2060078
The classic EPQ model assumes that items are produced of perfect quality and no shortage is permitted. In the real world situation, however, due to process deterioration or other factors, the occurrence of imperfect quality items is inevitable. This paper develops an extended economic production quantity (EPQ) model with imperfect production, shortage, and imperfect rework. We assume that the quality scan is conducted during the production. The scanned imperfect items are classified as the repairable and scrap. We consider that not all of the repairable items can be restored to meet the specified quality standard. Only some portion of defective items can be restored as normal items, the other results in defective, due to repair failure, can be sold at a discounted price to a secondary market. The renewal reward theorem is utilized to deal with the variable cycle length. The production quantity and the shortage level are determined in an optimal manner so as to minimize the average system cost. A numerical example is used to demonstrate its practical usage. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We study an (sS) production inventory system where the processing of inventory requires a positive random amount of time. As a consequence a queue of demands is formed. Demand process is assumed to be Poisson, duration of each service and time required to add an item to the inventory when the production is on, are independent, non-identically distributed exponential random variables. We assume that no customer joins the queue when the inventory level is zero. This assumption leads to an explicit product form solution for the steady state probability vector, using a simple approach. This is despite the fact that there is a strong correlation between the lead-time (the time required to add an item into the inventory) and the number of customers waiting in the system. The technique is: combine the steady state vector of the classical M/M/1 queue and the steady state vector of a production inventory system where the service is instantaneous and no backlogs are allowed. Using a similar technique, the expected length of a production cycle is also obtained explicitly. The optimal values of S and the production switching on level s have been studied for a cost function involving the steady state system performance measures. Since we have obtained explicit expressions for the performance measures, analytic expressions have been derived for calculating the optimal values of S and s.  相似文献   

8.
9.
In this paper, we model the effects of imperfect production processes on the economic lot scheduling problem (ELSP). It is assumed that the production facility starts in the in-control state producing items of high or perfect quality. However the facility may deteriorate with time and shifts at a random time to an out of control state and begins to produce nonconforming items. A mathematical model is developed for ELSP taking into account the effect of imperfect quality and process restoration. Numerical examples are presented to illustrate important issues related to the developed model.  相似文献   

10.
An EPQ model with inflation in an imperfect production system   总被引:1,自引:0,他引:1  
In this paper, a production inventory model is considered for stochastic demand with the effect of inflation. Generally, every manufacturing system wants to produce perfect quality items. However, due to real-life problems (labor problems, machine breakdown, etc.), a certain percentage of products are of imperfect quality. The imperfect items are reworked at a cost. The lifetime of a defective item follows a Weibull distribution. Due to the production of imperfect quality items, a product shortage occurs. The profit function is derived by using both a general distribution of demand and the uniform rectangular distribution of demand. Computational experiments along with graphical illustrations are presented to discuss the optimality of the probability functions.  相似文献   

11.
This paper derives the optimal replenishment policy for imperfect quality economic manufacturing quantity (EMQ) model with rework and backlogging. The classic EMQ model assumes that all items produced are of perfect quality. However, in real‐life manufacturing settings, generation of imperfect quality items is almost inevitable. In this study, a random defective rate is assumed. All items produced are inspected and the defective items are classified as scrap and repairable. A rework process is involved in each production run when regular manufacturing process ends, and a rate of failure in repair is also assumed. Unit disposal cost and unit repairing and holding costs are included in our mathematical modelling and analysis. The renewal reward theorem is employed in this study to cope with the variable cycle length. The optimal replenishment policy in terms of lot‐size and backlogging level that minimizes expected overall costs for the proposed imperfect quality EMQ model is derived. Special cases of the model are identified and discussed. Numerical example is provided to demonstrate its practical usage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the joint determination of both economic production quantity and preventive maintenance (PM) schedules under the realistic assumption that the production facility is subject to random failure and the maintenance is imperfect. The manufacturing system is assumed to deteriorate while in operation, with an increasing failure rate. The system undergoes PM either upon failure or after having reached a predetermined age, whichever of them occurs first. As is often the case in real manufacturing applications, maintenance activities are imperfect and unable to restore the system to its original healthy state. In this work, we propose a model that could be used to determine the optimal number of production runs and the sequence of PM schedules that minimizes the long-term average cost. Some useful properties of the cost function are developed to characterize the optimal policy. An algorithm is also proposed to find the optimal solutions to the problem at hand. Numerical results are provided to illustrate both the use of the algorithm in the study of the optimal cost function and the latter’s sensitivity to different changes in cost factors.  相似文献   

13.
Let (X,d) be a metric space and (Ω,d) a compact subspace of X which supports a non-atomic finite measure m. We consider ‘natural’ classes of badly approximable subsets of Ω. Loosely speaking, these consist of points in Ω which ‘stay clear’ of some given set of points in X. The classical set Bad of ‘badly approximable’ numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Ω have full Hausdorff dimension. Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups).  相似文献   

14.
The paper presents a generalized economic manufacturing quantity model for an unreliable production system in which the production facility may shift from an ‘in-control’ state to an ‘out-of-control’ state at any random time (when it starts producing defective items) and may ultimately break down afterwards. If a machine breakdown occurs during a production run, then corrective repair is done; otherwise, preventive repair is performed at the end of the production run to enhance the system reliability. The proposed model is formulated assuming that the time to machine breakdown, corrective and preventive repair times follow arbitrary probability distributions. However, the criteria for the existence and uniqueness of the optimal production time are derived under general breakdown and uniform repair time (corrective and preventive) distributions. The optimal production run time is determined numerically and the joint effect of process deterioration, machine breakdowns and repairs (corrective and preventive) on the optimal decisions is investigated for a numerical example.  相似文献   

15.
A proportional reasoning item bank was created from the relevant literature and tested in various forms. Rasch analyses of 303 pupils’ test results were used to calibrate the bank, and data from 84 pupils’ interviews was used to confirm our diagnostic interpretations. A number of sub-tests were scaled, including parallel ‘without models’ and ‘with models’ forms. We provide details of the 13-item ‘without models’ test which was formed from the ‘richest’ diagnostic items and verified on a further test sample (N=212, ages 10-13). Two scales were constructed for this test, one that measures children’s ‘ratio attainment’ and one that measures their ‘tendency for additive strategy.’ Other significant errors — ‘incorrect build-up,’ ‘magical doubling/halving,’ ‘constant sum’ and ‘incomplete reasoning’ — were identified. Finally, an empirical hierarchy of pupils’ attainment of proportional reasoning was formed, incorporating the significant errors and the additive scale.  相似文献   

16.
This article considers a production-inventory system consisting of a single imperfect unreliable machine. The items manufactured by the system are either perfect items or imperfect items, which require a rework to be restored to perfect quality. The rework rate is permitted to be different from the production rate if the rework process is different from the main manufacturing process. The fraction of the number of imperfect items is random following a general distribution function. The time to failure of the machine is random, following a general distribution function. If the machine fails before the lot is completed, the production is interrupted and the machine repair is started immediately. A random machine repair time is assumed, with a general distribution function. Unlike a common assumption in the literature, after the repair of the machine is completed, the production resumes. During the machine repair, a shortage can occur. A single-variable expected average cost function is derived to find the optimal lot size. Because of the complexity in the model, the ABC heuristic is proposed and implemented to find a near optimal value for the lot size. The article also provides a sensitivity analysis of the model's key parameters. It has been observed that the lot interruption-resumption policy leads to smaller lot sizes.  相似文献   

17.
This study integrates maintenance and production programs with the economic production quantity (EPQ) model for an imperfect process involving a deteriorating production system with increasing hazard rate: imperfect repair and rework upon failure (out of control state). The imperfect repair performs some restorations and restores the system to an operating state (in-control state), but leaves its failure until perfect preventive maintenance (PM) is performed. There are two types of PM, namely imperfect PM and perfect PM. The probability that perfect PM is performed depends on the number of imperfect maintenance operations performed since the last renewal cycle. Mathematical formulas are obtained for deriving the expected total cost. For the EPQ model, the optimum run time, which minimizes the total cost, is discussed. Various special cases are considered, including the maintenance learning effect. Finally, a numerical example is presented to illustrate the effects of PM, setup, breakdown and holding costs.  相似文献   

18.
Given items with short life cycles or seasonal demands, one can potentially improve profits by producing during the selling season, especially when its production capacity is substantial. We develop a two-stage, multi-item model incorporating reactive production that employs a firm’s internal capacity. Production occurs in an uncapacitated preseason stage and a capacitated reactive stage. Demands occur in the reactive stage. Reactive capacities are pre-allocated to each item in the preseason stage and cannot be changed during the reactive stage. Reactive production occurs during the selling season with full knowledge of demands. The objective is expected profit maximization. Unsatisfied demand is lost. The revenue, salvage value, and production and lost sales costs are proportional. Assuming no fixed costs, we present a simple algorithm for computing optimal policies. For a model with fixed costs for allocating preseason stage production and reactive stage capacity to product families, we characterize optimal policies and develop optimal and heuristic algorithms.  相似文献   

19.
Deteriorating production processes are common in reality. Although every production process starts in an ‘in-control’ state to produce items of acceptable quality, it may shift to an ‘out-of-control’ state, owing to ageing, at any random time and produce defective items. In the present article, we study the Economic Lot Scheduling Problem (ELSP) with imperfect production processes having significant changeovers between the products. The mathematical models are developed for the ELSP using both the common cycle approach and the time-varying lot sizes approach, taking into account the effects of imperfect quality and process restoration. Numerical examples are cited to illustrate the solution procedures and to compare the performances of the solution methodologies adopted to solve the ELSP.  相似文献   

20.
The classical economic order quantity (EOQ) model assumes that items produced are of perfect quality and that the unit cost of production is independent of demand. However, in realistic situations, product quality is never perfect, but is directly affected by the reliability of the production process. In this paper, we consider an EOQ model with imperfect production process and the unit production cost is directly related to process reliability and inversely related to the demand rate. In addition, a numerical example is given to illustrate the developed model. Sensitivity analysis is also performed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号