首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用共混的方法制备聚酰胺酸/聚丙烯腈(PAA/PAN)共混溶液.其中2种PAA溶液分别由二酐(3,3′,4,4′-联苯二酐(BPDA)与均苯四甲酸二酐(PMDA))和二胺(对苯二胺(PDA)与4,4′-二氨基二苯醚(ODA))均聚或共聚而得,N,N-二甲基乙酰胺(DMAc)为溶剂,PAN溶于DMAc中制成溶液后与PAA溶液混合,涂膜后热处理制得聚酰亚胺(PI)/PAN共混薄膜.分析了PAA和PAN在热处理过程中的变化,以及PAN的加入量对共混薄膜的结构与性能的影响.结果表明,在热处理过程中,PAA完成了亚胺化成为PI,而PAN完成了预氧化,形成了稳定的梯形结构,制备出具有良好力学性能、黑色、不透光的薄膜,但是随着PAN含量的增加,体系发生明显的相分离,薄膜力学性能有所下降,(BPDA/PDA/ODA)PI中加入10%的PAN和(PMDA/ODA)PI中加入20%的PAN时能获得具有良好力学性能的黑色、低透光率的薄膜.  相似文献   

2.
合成了3种含三氟甲基的芳香二胺,进而与3,3′,4,4′-联苯四甲酸二酐(BPDA)缩聚,得到3种对苯醚型含氟聚酰亚胺薄膜,并由4,4′-二氨基二苯醚(4,4′-ODA)与BPDA缩聚得到聚酰亚胺薄膜。 对4种聚酰亚胺薄膜的水蒸汽透过率、吸水性和热学性能的测试结果表明,其中聚合物PI-1(2,2′-BTF-4,4′-BADE+BPDA;BTF:双三氟甲基;BADE:二氨基二苯醚)的水蒸汽透过率为7.70 g/(h·m2),吸水率为0.67%,玻璃化转变温度为259.74 ℃,质量损失5%的温度为521.40 ℃,具有良好的水蒸汽透过性和低吸水性。  相似文献   

3.
以4,4′-二氟二苯砜、4,4′-联苯二酚、3,3′-二磺化-4,4′-二氟二苯砜二钠盐和三羟基苯为原料, 经高温溶液缩聚反应, 制备了一系列不同磺化度的新型交联磺化聚芳醚砜(CSPAES). 利用1H NMR和FTIR对聚合物结构进行表征. 采用溶液浇铸法制备了聚合物膜. 对膜的离子交换容量、吸水率、尺寸变化、机械性能和质子导电率进行了分析. 结果表明, 通过交联处理的磺化聚芳醚砜的水溶胀性明显降低, 当IEC为2.43时, CSPAES膜M(6/4-5)在水中的质子导电率达到260.5 mS/cm, 约为相同条件下Nafion112的2倍.  相似文献   

4.
利用聚酰胺酸(PAA)在研磨过程形成炭黑(CB)的"impurity-free"分散剂制备纳米CB填充聚酰亚胺(PI)高性能复合薄膜.球磨CB和PAA/N-甲基-2-吡咯烷酮(NMP)溶液的混合液,PAA在研磨过程中降解形成活性分子,原位生成与CB表面具有反应活性和强烈物理吸附能力的"impurity-free"分散剂.拉曼、红外以及紫外-可见光吸收光谱证实了降解PAA分子对CB的改性作用.经改性的CB与PAA溶液共混,涂覆固化制备PI/CB复合薄膜.TEM照片表明该分散剂可以显著促进CB粒子在PI基体中的均匀分散,分散粒径约为200nm.力学性能测试和导电性能测试表明PI/CB复合薄膜的断裂伸长率大幅提高,电阻率(ρ)重复性浮动范围从2个数量级降到1个数量级.进一步研究发现,研磨过程中添加高分子量PAA更有利于CB在PI基体中的均匀分散.  相似文献   

5.
选用均苯四甲酸二酐(PMDA)、4,4′-二氨基二苯醚(ODA)为单体,通过低温缩聚反应制备了PMDA-ODA型聚酰胺酸溶液,通过调节其黏度特性使之适合于微笔直写沉积工艺.采用微笔直写沉积PAA溶液和热亚胺化处理两步法制作出PI图形,并通过Au/PI微桥阵列结构实例显示了该工艺在MEMS聚合物牺牲层或结构层制造领域的应用潜力.  相似文献   

6.
高折射率高透明性半脂环聚酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
采用脂环二酐单体2,3,5-三羧基环戊烷基乙酸二酐(TCAAH)分别与两种含硫芳香族二胺单体,4,4′-双(4-氨基苯硫基)二苯硫醚(3SDA)与2,7-双(4-氨基苯硫基)噻蒽(APTT)通过两步法制备了两种半脂环聚酰亚胺(PI).制备的PI薄膜在可见光波长范围内(400~700 nm)具有优良的透明性,400 nm处的透过率超过85%.此外,该系列薄膜还具有良好的耐热稳定性,氮气中的起始热分解温度超过480℃,玻璃化转变温度超过250℃.PI薄膜在632.8 nm处的折射率大于1.68,双折射小于0.006.为了进一步提高PI薄膜的折射率,初步考察了PI前体溶液聚酰胺酸(PAA)与高折射率无机TiO2纳米粒子的复合工艺.结果表明,PI-TiO2薄膜同样具有良好的透明性,632.8 nm处的折射率达到1.76.  相似文献   

7.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)为芳二酐单体,对苯二胺(PPD)为芳二胺单体,经低温溶液缩聚制得成膜性能优良的高相对分子质量聚酰胺酸(PAA),再经过热亚胺化制备双酮酐型聚酰亚胺(PI)薄膜。 采用傅里叶变换红外光谱仪(FT-IR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)、热重分析仪(TGA)、紫外-可见分光光度计(UV-Vis)及力学性能等技术手段表征了聚酰亚胺膜的结构和性能,考察了不同亚胺化温度对合成的双酮酐型聚酰亚胺膜性能的影响。 结果表明,经程序升温至320 ℃能使PAA热亚胺化基本趋于完成。 PI薄膜为部分有序聚集态结构,玻璃化转变温度(Tg)为298 ℃,具有优异的热性能,热失重温度(T5%)为523 ℃。 拉伸强度达到130 MPa,弹性模量为5.77 GPa。 PI薄膜紫外光透过截止波长为375 nm,在可见光区具有良好的透光性能及耐溶剂性能。  相似文献   

8.
不同比例的s-BPDA/i-BPDA型聚酰亚胺共聚结构与性能关系   总被引:1,自引:0,他引:1  
由不同比例的二酐单体3,3′,4,4′-联苯四酸二酐(s-BPDA)/2,2′,3,3′-联苯四酸二酐(i-BPDA)与二胺单体4,4′-二氨基二苯醚(4,4′-ODA)制得了一系列共聚可溶聚酰亚胺. 采用DSC 、TGA和拉伸等测试方法对所得共聚聚酰亚胺进行了表征, 实验结果表明, 所得聚酰亚胺具有优异的力学性能和热稳定性, 并且随着i-BPDA含量的增加, 聚酰亚胺的溶解性提高, 玻璃化转变温度(Tg)升高, 中间体聚酰胺酸的固有黏度降低.  相似文献   

9.
以对苯二酚和对氟苯甲腈为原料, 合成了1,4-二(4-羧基苯氧基)苯, 并与4,4′-二羧基二苯醚作为共聚单体与3,3′-二氨基联苯胺反应合成了共聚型聚苯并咪唑, 通过红外光谱、核磁共振和热重分析等手段对聚合物的结构及热性能进行了分析. 研究了聚合物的黏度、溶解性、成膜性及聚合物薄膜的力学性能.  相似文献   

10.
丙烯酸羟乙酯对丙烯酸酯改性水性聚氨酯性能的影响   总被引:3,自引:0,他引:3  
以异佛尔酮二异氰酸酯、二羟甲基丙酸和聚丙醚二醇等为聚氨酯原料, 丙烯酸丁酯、甲基丙烯酸甲酯、三羟甲基丙烷三丙烯酸酯为丙烯酸酯类单体, 丙烯酸羟乙酯(HEA)为聚氨酯和聚丙烯酸酯间的偶联剂合成了丙烯酸酯改性水性聚氨酯(PU-AC)乳液. 首先建立并验证了一种测定PU接枝率, 即PU与丙烯酸酯发生接枝的部分占PU总数的百分比的方法, 然后探讨了加入HEA后的反应温度和HEA用量对PU接枝率、PU-AC乳胶粒径、胶膜吸水率和交联度等性能的影响. 随着HEA与PU预聚体反应温度和HEA用量的提高, 体系中的最终残余NCO逐渐降低. 当HEA用量低于其加入前体系中残余NCO量时, 增加其用量使PU接枝率和PU-AC乳胶粒径逐渐增加; 当HEA用量大于体系残余的NCO量后继续增加其用量对PU接枝率和PU-AC乳胶粒径的影响不大. 胶膜吸水率随着HEA用量的增加而降低.  相似文献   

11.
A new route to porous polyimide (PI) films with pore sizes in the nanometer regime was developed. A polyamic acid (PAA)/polyurethane (PU) blend with PU as the disperse phase was first prepared via in situ polymerization of pyromellitic dianhydride and 4,4-oxydianiline in PU solutions. Porous PI films were obtained from PAA/PU films by thermolysis of PU at 360°C and imidization of PAA at 300°C, respectively. Fourier transform infrared spectroscopy and thermal gravimetric analysis were used to detect the imidization and thermolysis processes of PAA/PU blends under thermal treatment. The microporous structure of the PI films was observed by transmission electron microscopy. It was found that the size and content of pores increased with an increase in the PU mass fraction in the PAA/PU blend up to 20%. Because of the existence of nanopores, the dielectric constant of PI films decreased by a wide margin and was less than 2.0 at a PU mass fraction of 20%. It implies that this is an effective means to reduce the dielectric constant of PI, but it also causes the decrease of tensile strength and the rise of water absorption. Translated from Chemistry Journal of Chinese Universities 2006, 27(1): (in Chinese)  相似文献   

12.
In order to decrease the resistance–capacitance delay and signal crosstalk in ultra large‐scale integrated circuits (ULSIC), dielectric materials with ultra low dielectric constants are developed to be the replacement of silicon dioxide. Introduction of air on the matrix material is an important method to reduce the dielectric constant, and polyimide (PI) is the most promising polymer to prepare porous matrix material for its distinct advantages. PI membrane with nanopores was prepared by the method of template method (i.e. thermolysis of polystyrene nanospheres in the matrix) following the synthesis of template. The nanoporous membrane was characterized by Fourier transformer infrared, scanning electron microscopy, thermogravimetric analysis, and the dielectric constant of which was measured. Results showed that uniform nanopores about 100–200 nm were formed in the PI membrane, and dielectric constant of which was decreased to 2.08 from 3.34. The nanoporous membrane can be applied as potential low‐k dielectric material in ULSIC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A series of novel ultralow dielectric porous polyimide (PI) films containing adamantane groups was prepared via the thermolysis of polyethylene glycol (PEG) oligomers mixed into PI matrix. Scanning electron microscopy results indicated that the porous PI films showed closed pores with an average diameter of 120 ± 10 nm. Good thermal properties with 5% weight loss temperature of 499 °C in air atmosphere and glass transition temperature in excess of 310 °C were shown for porous PI films. Notably, the ultralow dielectric constant of porous PI films with 1.85 at 1 MHz was obtained and revealed via broadband dielectric spectroscopy. The effects of the chemical structure of the PI matrix and PEG content on the decomposition behavior of PEG and the performance of porous films were investigated. Wide‐angle X‐ray diffraction results indicated that the PI matrix with large d‐spacing generated weaker interactions between the PEG and PI backbone than those of PI matrix with small d‐spacing. As a result, the PEG for the PI matrix with large d‐spacing was completely decomposed. As indicated by the broadband dielectric spectroscopy results, lower dielectric porous PI films were prepared when the PEG contents in the PI matrix increased from 0 to 20 wt %. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 549–559  相似文献   

14.
Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/silica nanocomposite films were prepared via an improved sol–gel process and a blending process, respectively. FT‐IR, TEM and TGA measurements were used to characterize the structure and properties of the obtained films. The results confirmed that the introduction of silica did not yield negative effects on the conversion of the PAA precursor to the polyimide. With the increase of silica content, the aggregation of silica appeared in the polyimide matrix, and the thermal stability decreased slightly for both kinds of films. The dielectric constant (ε) of both films increased slowly with the increase of the silica concentration. The dielectric constant of the obtained polyimide/silica nanocomposite films displayed good stability within a wide range of temperatures or frequency. Based on modeling relation between ε and silica content, the difference in dielectric properties for two kinds of nanocomposites are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Herein we report an easy and efficient approach to prepare lightweight porous polyimide (PI)/reduced graphene oxide (RGO) composite films. First, porous poly (amic acid) (PAA)/graphene oxide (GO) composite films were prepared via non‐solvent induced phase separation (NIPS) process. Afterwards PAA was converted into PI through thermal imidization and simultaneously GO dispersed in PAA matrix was in situ thermally reduced to RGO. The GO undergoing the same thermal treatment process as thermal imidization was characterized with thermogravimetric analysis, Raman spectra, X‐ray photoelectron spectroscopy and X‐ray diffraction to demonstrate that GO was in situ reduced during thermal imidization process. The resultant porous PI/RGO composite film (500‐µm thickness), which was prepared from pristine PAA/GO composite with 8 wt% GO, exhibited effective electrical conductivity of 0.015 S m?1 and excellent specific shielding efficiency value of 693 dB cm2 g?1. In addition, the thermal stability of the porous PI/RGO composite films was also dramatically enhanced. Compared with that of porous PI film, the 5% weight loss temperature of the composite film mentioned above was improved from 525°C to 538°C. Moreover, tensile test showed that the composite film mentioned above possessed a tensile strength of 6.97 MPa and Young's modulus of 545 MPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, a series of [3-(2-aminoethyl)amino]propyl-heptaisobutyl substituted polyhedral oligomeric silsesquioxane (AHIP) containing polyimide (PI) nanocomposites were successfully prepared. Structural, thermal and electrical properties of the polyimide nanocomposites were studied. The properties of AHIP containing polyimides were compared with those of the neat polyimide films. The surface morphology of the prepared AHIP containing polyimides were determined by using Scanning Electron Microscopy (SEM). The hydrophilic/hydrophobic nature of AHIP/polyimide composites were analyzed by measuring their water contact angles. It was found that the addition of AHIP into the polyimide slightly increased the contact angle values. The incorporation of 5% AHIP to the PI matrix decreased the dielectric constant value of pure PI from 8.6 to 11.7, respectively. Furthermore he dielectric permittivity was changed from 8.6 (neat polyimide) to 5.5 (PI3).  相似文献   

17.
A novel type of a Si-containing poly(urethane-imide) (PUI) was prepared by two different methods. In the first method, Si-containing polyurethane (PU) prepolymer having isocyanate end groups was prepared by the reaction of diphenylsilanediol (DSiD) and toluene diisocyanate (TDI). Subsequently the PU prepolymer was reacted with pyromellitic dianhydride (PMDA) or benzophenonetetracarboxylic dianhydride (BTDA) in N-methyl pyrolidone (NMP) to form Si-containing modified polyimide directly. In the second method, PU prepolymer was reacted with diaminodiphenylether (DDE) or diaminodiphenylsulfone (DDS) in order to prepare an amine telechelic PU prepolymer. Finally, the PU prepolymer having diamine end groups was reacted with PMDA or BTDA to form a Si-containing modified polyimide. Cast films prepared by second method were thermally treated at 160 °C to give a series of clear, transparent PUI films. Thermogravimetric analysis indicated that the thermal degradation of PUI starts at 265 °C which is higher than degradation temperature of conventional PU, confirming that the introduction of imide groups improved the thermal stability of PU.To characterize the modified polyimides and their films, TGA, FTIR, SEM and inherent viscosity analyses were carried out. The dielectrical properties were investigated by the frequency-capacitance method. Dielectric constant, dielectric breakdown strength, moisture uptake and solubility properties of the films were also investigated.  相似文献   

18.
A high‐performance, low‐dielectric‐constant polyimide (PI) nanocomposite from poly(amic acid) (PAA) cured with a reactive fluorine polyhedral oligomeric silsesquioxane (POSS) isomer was successfully synthesized. The features of this reactive fluorine POSS isomer [octakis(dimethylsiloxyhexafluoropropylglycidyl ether)silsesquioxane (OFG)] provided two important approaches (containing fluorine or being porous in the polymer matrix) of reducing the dielectric constant of PI. This reactive POSS isomer had an average of four epoxy groups and four fluorine groups on the POSS cage, and the epoxy groups could be cured with PAA to form a network framework of a PI/POSS nanocomposite. The PI/OFG nanocomposite had a high crosslinking density, high porosity (24.3%), high hydrophobicity, and low polarizability. These properties enhanced the thermal (glass‐transition temperature ~ 362 °C) and dielectric (dielectric constant ~2.30) properties of PI more than other POSS derivatives introduced into the PI backbone. A large number of small POSS particles (<10 nm) were embedded inside the PI matrix when the OFG content was low, whereas interconnected POSS aggregation domains were observed when the OFG content was high. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5391–5402, 2006  相似文献   

19.
Hybrid nanocomposite films of poly(vinylsilsesquioxane) (PVSSQ) and polyimide (PI) (PI/PVSSQ) were prepared via sol‐gel process from triethoxyvinylsilane (VSSQ) and thermal imidization from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)‐p‐phenylene diamine (PDA) polyamic acid (BPDA‐PDA PAA). We investigated the microstructure; interfacial interaction; and optical, thermal, dielectric, and mechanical properties of the hybrid films. The phase morphologies and degree of surface roughness were evaluated by scanning electron microscope (SEM) and atomic force microscope (AFM), respectively. It was found that the surface topography was influenced by the composition of PVSSQ. Hydrogen bonding interactions between polyimide (PI) matrix and PVSSQ domains were proved with FT‐IR spectroscopy. The transparency of the hybrid films was found to be dependent on the PVSSQ content. Incorporating of the PVSSQ in the hybrid composites increased the glass transition temperature of PI. Dielectric constants of the hybrid films were in the range of 2.37–3.59. Properties of the PI films were also significantly enhanced by adding 5–30 wt % of PVSSQ. For comparison, we also prepared the hybrid composites of PI and mixtures of VSSQ and tetraethoxysilane (TEOS) and the PI/silica hybrid composite containing 30 wt % of silica obtained from TEOS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5189–5199, 2004  相似文献   

20.
Composite films of polyimide (PI) and poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) or of PI and poly(tetrafluoroethylene) (PTFE) were prepared by thermal imidization of the poly(amic acid) (PAA) precursors of poly(pyromellitic dianhydride-4,4′-oxydianiline) (PMPA-ODA) on glycidyl methacrylate (GMA) graft-copolymerized FEP and PTFE films. The resulting PI/GMA-g-FEP and PI/GMA-g-PTFE composites exhibited T-peel adhesion strength of approximately 7.0 and 6.5 N/cm, respectively, compared to negligible adhesion strength for the laminates prepared from thermal imidization of the PAA on the pristine and the Ar plasma-treated FEP and PTFE films. X-ray photoelectron spectroscopy (XPS) results revealed that both the PI/GMA-g-FEP and PI/FEP-g-PTFE composite films delaminated by cohesive failure inside the FEP and PTFE films, respectively. The so-delaminated PI films with a covalently tethered FEP or PTFE surface layer were highly hydrophobic, having static water contact angles above 140°. The highly hydrophobic property depends on both the composition and roughness of the delaminated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号