首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Recent studies on organically modified clays (OMCs) have reported enhanced thermal stabilities when using imidazolium-based surfactants over the typical ammonium-based surfactants. Other studies have shown that polyhedral oligomeric silsesquioxanes (POSS) also improve the thermal properties of composites containing these macromers. In an attempt to utilize the beneficial properties of both imidazolium surfactants and POSS macromers, a dual nanocomposite approach to prepare OMCs was used. In this study, the preparation of a new POSS-imidazolium surfactant and its use as an organic modifier for montmorillonite are reported. The purity, solubility, and thermal characteristics of the POSS-imidazolium chloride were evaluated. In addition, several OMCs were prepared by exchanging the Na+ with POSS imidazolium cations equivalent to 100%, 95%, 40%, 20%, and 5% of the cation exchange capacity of the clay. The subsequent OMCs were characterized using thermal analysis techniques (DSC, SDT, and TGA) as well as 29Si NMR to determine the POSS content in the clay interlayer both before and after thermal oxidation degradation. Results indicate the following: (1) the solvent choice changes the efficiency of the ion-exchange reaction of the clay; (2) self-assembled crystalline POSS domains are present in the clay interlayer; (3) the d-spacing of the exchanged clay is large (3.6 nm), accommodating a bilayer structure of the POSS-imidazolium; and (4) the prepared POSS-imidazolium exchanged clays exhibit higher thermal stabilities than any previously prepared imidazolium or ammonium exchanged montmorillonite.  相似文献   

2.
PA6 composites with Cloisite® 30B (30B), prepared by different procedures, i.e., melt compounding, static annealing and solution blending, have been characterized by X-ray diffraction and microscopic analyses (TEM, SEM, POM) in order to shed more light on the mechanism of nanostructure development. It has been demonstrated that intercalation of the PA6 chains within the 30B galleries takes place very rapidly, in the absence of applied stresses, even when the size of the clay particles is relatively large (tens of microns) and the clay loading is very high (even 50 wt.%). It has also been shown that, if, conversely, the filler content is low (∼10 wt.% or less) and the particles are tiny (e.g., as for polymer/clay mixtures prepared by precipitation from a common solution), intercalation continues, under quiescent conditions, and leads in reasonable times to complete destruction of the silicate platelets stacking order. The composites with higher filler contents display a mixed exfoliated/intercalated morphology, with the intercalated silicate stacks characterized by an interlayer distance of about 3.7 nm. Contrary to statically annealed composites, the melt kneaded ones are characterized by a homogeneous dispersion of the filler particles and a local parallel orientation of the silicate platelets that induces, during polymer crystallization, an orientation of the polymer crystallites parallel to the faces of the compression molded specimens. Experiments carried out using 30B samples previously treated at 250 °C for 4 h under vacuum (30Bdegr) indicate that this treatment, probably due to the collapsed interlayer spaces, lowers the extent of PA6 chains intercalation. Thus, the relevant PA6/30Bdegr composites are characterized by the coexistence of unintercalated clay tactoids/agglomerates and individual silicate layers formed as result of intercalation on the edges of the filler particles.  相似文献   

3.
Montmorillonite (MMT) clay modified with octadecylbenzyldimethylammonium chloride (OBDM), B2, and its composites with nematic liquid crystal (LC) 4-pentyl-4'-cyanobiphenyl (5CB), 5CB-B2, with different concentration of the clay (3-8 wt %) were investigated by X-ray diffraction, polarizing optical microscopy, differential scanning calorimetry, FTIR spectroscopy and atomic force microscopy. Modification of Na-MMT with OBDM surfactant results in an increase of the chemical affinity of the clay for 5CB. This results in considerable increase of the basal spacings of the clay, giving a possibility for 5CB dimers to penetrate into the interlayer space. Better affinity of the clay for LC allows clay nanoparticles to disperse homogeneously in the LC, and affects thermodynamic and optical properties of the nanocomposites. For 5CB-B2 composites, the structure formation and the strength of the interface interactions were practically independent on B2 concentration. A comparison with 5CB-B3 composites (B3 is MMT modified with dioctadecyldimethylammonium chloride) revealed that the ability of the clay to form homogeneous structures in the LC and thermodynamic and optical properties of the composites are highly dependent on the chemical nature of the surfactant. Varying the type of the clay mineral modifier, it is possible to develop novel heterogeneous LC nanocomposites with desirable electro-optical properties.  相似文献   

4.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

5.
以二氯甲烷为溶剂,利用溶液共混法将三种聚笼形多面体倍半硅氧烷(POSS)分别与聚左旋乳酸(PLLA)进行共混,制备了不同POSS含量的单氨基POSS(POSS-NH2)/PLLA、POSS接枝聚乙二醇(POSS-PEG)/PLLA和POSS接枝聚乳酸(POSS-g-PLLA)/PLLA复合材料。利用差示扫描量热仪(DSC)、热重分析仪(TGA)、偏光显微镜(POM) 分别对复合材料的本体结晶行为、热稳定性及结晶形貌和生长速率进行了观察。结果表明当加入不同质量分数(1 wt%, 5 wt%, 10 wt%)的POSS-PEG时,PLLA的结晶能力均得到改善,而POSS-NH2和POSS-g-PLLA仅在质量分数较低(1wt%)时对PLLA起成核剂的作用,具有较高质量分数时会阻碍PLLA分子链段的运动,从而限制其结晶。三种复合材料中仅POSS-PEG在一定程度上提高了PLLA的热稳定性,利用POM观察球晶生长过程发现POSS-PEG的加入提高了PLLA的球晶生长速率。  相似文献   

6.
Novel poly(butylene terephthalate) (PBT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were synthesized by ring‐opening polymerization of cyclic poly(butylene terephthalate) initiated by functionalized POSS with various feed ratios. The impact of POSS incorporation on melting and crystallization behaviors of PBT/POSS nanocomposites was investigated by means of X‐ray diffraction and differential scanning calorimetry. It was found that the novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PBT. Thermal studies confirmed that the incorporation of POSS can enhance the thermal stability of the polymers, and the copolymer glass transition temperature increased with the increasing of POSS macromonomer content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1853–1859, 2010  相似文献   

7.
Interest in thermoplastic composites is growing because of their advantages over thermosets in recyclability and in toughness. The melt viscosity of thermoplastic polymers is very high, which makes fibre impregnation difficult. This can be solved by using in-situ polymerization with cyclic butylene terephthalate (CBT). However this leads to a brittle PBT. To solve this problem physical and chemical modification of the polymerized CBT (pCBT) was performed, to disturb the crystallization. Chemical modification with PC and with PTHF has an embrittling effect because of a bad chemical interaction. When polycaprolactone is added to the CBT a copolymer is formed which leads to a lower crystallinity, resulting in a higher toughness of the pCBT. This tougher matrix material was used in composites and a two times tougher composite is produced when only 7 wt% PCL is added to the CBT. The physical modification evaluated was the addition of carbon nanotubes (CNT). Although an increase in stiffness and strength of the pCBT is seen when CNTs are added up to 0.1 wt%, the failure strain decreases.  相似文献   

8.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

9.
Summary: Composites of dimethacrylates/organoclay were obtained by in situ photopolymerization of Bis-GMA (Bisphenol A glycidyl methacrylate) and TEGDMA (tetraethyleneglycol dimethacrylate) in the presence of camphorquinone and DEEMA (2-(diethylamino)ethyl methacrylate). The composites contained up to 10% wt/wt of organoclays. Monomer conversion and polymerization kinetics were determined by real time Fourier-Transform Infrared Spectroscopy – Attenuated Total Reflectance (FTIR-ATR), and showed an increase of conversion with addition of the clay. The storage modulus E' of the composites also had a marked dependence on the composite composition and increased with addition of clay at all temperatures. Tg also increases with clay content. X-Ray Diffraction (XRD) analysis shows that the clay is completely exfoliated for the composites with a lower proportion of clay, whereas for larger clay/polymer proportions peaks corresponding to the interlamellar distance of the clay are still observed. This is probably due to the fact that the amount of monomers in the initial formulation was not sufficient to delaminate the clay. Scanning Electron Microscopy (SEM) images indicate a quite homogenous copolymer, with some clay aggregates that increase in size and number for the higher filler loadings in agreement with the XRD results.  相似文献   

10.
The reactive blending composites of isotactic polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (POSS) were prepared in the presence of dicumyl peroxide. Comparison of the rheological behavior of physical and reactive blending composites was made by oscillatory rheological measurements. It was found that the viscosity of physical blending composites drops at lower POSS content (0.5–1 wt %) and thereafter increases with increasing POSS content; that of reactive blending composites increases with increasing POSS content and displays a solid‐like rheological behavior at low frequency region when POSS content is higher than 1 wt %. The deviation of reactive blending composites from the scaling log G′–log G″ of linear polymer in Han plot, upturning at high viscosity in Cole–Cole plot, and from van Gurp–Palmen plot are related to the gelation behavior reactively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 526–533, 2008  相似文献   

11.
In this paper the effect of different organoclays on the structure and the rheological properties of poly(butyleneterephtalate)–clay nanocomposites produced by melt compounding was investigated. The study was carried out using as nanometric fillers four commercial montmorillonites, treated with different organic modifiers and having similar interlayer spacing and organo-modifier concentration. Each organoclay was melt compounded with PBT (at 3%, 6% and 9% by weight of clay) using a twin screw extruder. Using the same processing conditions, hybrid samples containing the unmodified silicate were also prepared for comparison purposes. All the obtained nanocomposite samples were submitted to physico-chemical (XRD, TEM and FT-IR), and rheological measurements in order to evidence the role of polymer-clay affinity on the morphology and on the viscoelastic response of the materials. The results have pointed out that, with the used processing conditions, all nanocomposites exhibit a mixed intercalated/exfoliated structure; nevertheless, the clay dispersion homogeneity and the exfoliation level reached in the samples are higher for Nanofil 919 and Dellite 43B fillers, the organic modifiers of which may favorably interact with PBT matrix.  相似文献   

12.
The structure and morphology of homopolymers and blends of rigid-rod poly(p-phenylene benzobisthiazole) (PBT) and semiflexible coil poly[2,5(6)benzimidazole] (ABPBI) were examined by wide-angle x-ray diffraction and scanning and transmission electron microscopy. When samples were processed from a solution where the total polymer concentration of 30% PBT/70% ABPBI blend was greater than a critical concentration, large-scale phase separation occurred and 0.1–4 μm ellipsoidal particles were present in a ductile matrix. The ellipsoids were chiefly composed of aggregates of well-oriented 10-nm PBT crystallites, while the matrix material was chiefly ABPBI. When the concentration was less than a critical concentration, the solution was optically homogeneous. In processing of fiber and film samples from the homogeneous solution, large-scale phase separation was inhibited by rapid coagulation in a water bath. After heat treatment, these samples were found to contain crystallites of both PBT and ABPBI with lateral dimensions of ordered regions no larger than 3 nm. The PBT homopolymer was dispersed in the matrix at the molecular level in ordered regions at a scale no larger than 3 nm, resulting in a rigid-rod molecular composite. In the rigid-rod molecular composite fiber both the molecular-level dispersion and high orientation contributed to higher values of strength and modulus compared to the properties of a phase-separated fiber. The strength and modulus of highly oriented fiber were only 25% higher than those of planar isotropically oriented film, suggesting that the level of dispersion of rod molecules is more important than orientation of the reinforcing phase in rigid-rod molecular composites.  相似文献   

13.
The octavinyl polyhedral oligomeric silsesquioxane (POSS) grafted polypropylene (PP) was first prepared by reactive blending. The structure and properties of physical blending and reactive blending composites of PP/POSS were investigated by wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA). WAXD analysis shows that the POSS in the reactive blending composites has better compatibility with PP than in the physical blending composites. The β-form crystalline hence disappears even the non-reactive POSS can act as an effective β-nucleating agents. DSC analysis shows the reactive blending composites have higher crystalline temperature while POSS in the physical blending composites have little effect on the crystalline temperature. The modulus of reactive blending composites increases in the presence of POSS, while that of the physical blending composites decreases with increasing POSS content.  相似文献   

14.
The crystallization behavior and morphology of polymerized cyclic butylene terephthalate (pCBT) were investigated by thermal differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The spherulite growth rate was analyzed based on the Hoffman and Lauritzen theory to better understand the crystallization behavior. We found four typical morphologic features of pCBT corresponding to the crystallization temperature spectrum: usual negative spherulite, unusual spherulite, mixed birefringence spherulite coexisting with boundary crystals, and highly disordered spherulitic crystallites. The Avrami crystallization kinetics confirmed the occurrence of combined heterogeneous nucleation accompanied by a change in the spherulitic shape of pCBT, which also agreed with the PLM results. The equilibrium melting temperature and glass transition temperature of pCBT were 257.8 °C and 41.1 °C, respectively. A regime II–III transition occurred at 200.9 °C, which was 10 °C lower than that reported for poly(butylene terephthalate) (PBT). Coinciding with and attributed to the regime transition, the boundary crystal disappeared at temperatures above 200 °C and the morphology changed from the mixed type to highly disordered spherulitic crystallites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1127–1134, 2010  相似文献   

15.
New fluoroalkyl end-capped 2-acrylamido-2-methylpropanesulfonic acid oligomers/clay composites were prepared by reaction of fluoroalkanoyl peroxide with the corresponding monomer in the presence of clay in aqueous solutions. These obtained fluorinated composites were nanometer size-controlled and were found to exhibit a good dispersibility in water and polar organic solvents such as methanol. The contents of clay in these nanocomposites were estimated to be 3~19% by the thermogravimetric analysis measurements. X-ray diffraction spectra showed the successful intercalation of fluorinated oligomers into the interlayer spaces of clay. These fluorinated clay nanocomposites were applied to the surface modification of poly(vinyl alcohol). In addition, these fluorinated nanocomposites were found to interact with methylene blue effectively to afford the fluorinated oligomers/clay/methylene blue nanocomposites.  相似文献   

16.
SBR compounds including the N-isopropyl-N’-phenyl-p-phenylenediamine-modified clay(organoclay) were prepared.Effects of modified clay and antioxidant(IPPD) contents on mechanical and rheological properties of SBR composites were studied.FTIR results confirmed that the clay was chemically modified by IPPD and changed into an organoclay.X-ray diffraction(XRD) results confirmed the increase in interlayer distance of the clay due to the insertion of IPPD.Rheological and cure characteristics of SBR compounds were determined using RPA(Rubber Process Analyzer) and rheometer.Scorch time and cure time of SBR compounds decreased with introduction of the organoclay.Mechanical properties and heat aging resistance of the SBR composites were improved significantly by incorporation of the organoclay.  相似文献   

17.
We synthesized organosoluble, thermoplastic elastomer/clay nanocomposites by making a jelly like solution of ethylene vinyl acetate containing 28% vinyl acetate (EVA‐28) and blending it with organomodified montmorillonite. Sodium montmorillonite (Na+‐MMT) was made organophilic by the intercalation of dodecyl ammonium ions. X‐ray diffraction patterns of Na+‐MMT and its corresponding organomodified dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) showed an increase in the interlayer spacing from 11.94 to 15.78 Å. However, X‐ray diffraction patterns of the thermoplastic elastomer and its hybrids with organomodified clay contents up to 6 wt % exhibited the disappearance of basal reflection peaks within an angle range of 3–10°, supporting the formation of a delaminated configuration. A hybrid containing 8 wt % 12Me‐MMT revealed a small hump within an angle range of 5–6° because of the aggregation of silicate layers in the EVA‐28 matrix. A transmission electron microscopy image of the same hybrid showed 3–5‐nm 12Me‐MMT particles dispersed in the thermoplastic elastomer matrix; that is, it led to the formation of nanocomposites or molecular‐level composites with a delaminated configuration. The formation of nanocomposites was reflected through the unexpected improvement of thermal and mechanical properties; for example, the tensile strength of a nanocomposite containing only 4 wt % organophilic clay was doubled in comparison with that of pure EVA‐28, and the thermal stability of the same nanocomposite was higher by about 34 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2065–2072, 2002  相似文献   

18.
Polypropylene (PP)/nylon 6/clay composites were prepared by compounding of PP, which had previously been treated with two kinds of silane compounds, with a master batch composed of 90 wt % of nylon 6 and 10 wt % of octadecyl amine‐modified sodium montmorillonite (NM10). The morphology of the composites was investigated by means of SEM, TEM, XRD, and energy‐dispersive X‐ray analysis. All of the composites exhibited a phase‐separated morphology, irrespective of whether the PP was modified with the silane compounds or not. However, adhesive strength between the modified PP and NM10 was stronger than that between neat PP and NM10. Moreover, the PP grafted with 3‐(trimethoxysilyl)propyl methacrylate (PP2) reacted with the silanol groups of the clay to form PP‐clay hybrid during the compounding, which acted as a compatibilizer for the PP/nylon 6/clay composite. PP2NM composite (PP2/NM10 80/20 on weight basis) exhibited a peculiar morphology, in that the PP‐rich phase formed island domains within the nylon 6‐rich domains, which were in turn dispersed in the PP‐rich continuous matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 607–615, 2007.  相似文献   

19.
Cyclic butylene terephthalate (CBT) was polymerized in the presence of a low molecular weight bifunctional epoxy resin. The resultant chain extended polymerized CBT (pCBT) showed an increased ductility compared to that of conventionally polymerized pCBT for all analyzed epoxy concentrations (1–4 wt.%). The best results were obtained with 2 wt.% of epoxy resin. Other mechanical properties remained relatively unaffected by the epoxy resin. 1H NMR analysis suggested an esterification reaction of the carboxyl end groups of pCBT and the glycidyl functional groups of the diepoxide. With increasing epoxy content, the chain extended pCBT showed an increasing molecular weight and a decreasing glass transition. Crystallization and melting temperatures as well as crystallinity also decreased with increasing epoxy concentration.  相似文献   

20.
In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号