首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Hybrids composed of peroxide-curable hydrogenated acrylonitrile-butadiene rubber (HNBR) and cyclic butylene terephthalate oligomers (CBT) were produced. CBT was expected to polymerize in situ when curing the HNBR. Extraction, differential scanning calorimetry (DSC), dynamic-mechanical thermal analysis (DMTA), wide-angle X-ray scattering (WAXS) and atomic force microscopy (AFM) were adopted to investigate the CBT conversion and the phase structure of the hybrids before (T = 190 °C; HNBR-(p)CBT) and after annealing (T = 250 °C; HNBR-pCBT). Unlubricated rolling wear properties of the related compounds with different CBT contents were assessed in orbital rolling ball (steel)-on-plate (rubber) test rig (Orbital-RBOP). The dynamic coefficient of friction and the specific wear rate were determined. Both (p)CBT and pCBT improved the rolling wear resistance of the hybrids compared to plain HNBR. However, the polymerized CBT (pCBT) improved the wear properties more than the unpolymerized CBT ((p)CBT). The wear mechanisms were identified by inspecting the worn surfaces in scanning electron microscope (SEM) and are discussed as a function of (p)CBT/pCBT modification. Changes in the structure and properties of the hybrids caused by the annealing-induced polymerization of CBT were analyzed.  相似文献   

2.
Cyclic butylene terephthalate (CBT) was polymerized in the presence of a low molecular weight bifunctional epoxy resin. The resultant chain extended polymerized CBT (pCBT) showed an increased ductility compared to that of conventionally polymerized pCBT for all analyzed epoxy concentrations (1–4 wt.%). The best results were obtained with 2 wt.% of epoxy resin. Other mechanical properties remained relatively unaffected by the epoxy resin. 1H NMR analysis suggested an esterification reaction of the carboxyl end groups of pCBT and the glycidyl functional groups of the diepoxide. With increasing epoxy content, the chain extended pCBT showed an increasing molecular weight and a decreasing glass transition. Crystallization and melting temperatures as well as crystallinity also decreased with increasing epoxy concentration.  相似文献   

3.
The effect of cassava pulp (CP) on morphological, tensile, and thermal properties of a thermoplastic cassava starch (TPS)/poly (lactic acid) (PLA) blend was investigated. TPS/PLA/CP biocomposites were manufactured by melt extrusion and then converted into specimens using an injection molding. The weight fraction of PLA to TPS/CP was fixed at 40:60, whereas the final CP concentration in the composites was varied in the range of 4.4–22.1 wt%. CP could act as a reinforcement for TPS/PLA blend to enhance its tensile strength up to 354% and Young's modulus up to 722% when 22.1 wt% of CP was loaded and a nucleating agent for PLA as confirmed from the reduced Tcc. In addition, TPS/PLA/CP composites showed a discrete phase structure (i.e., droplets in matrix) when CP with lower concentration (i.e., 4.4 wt%, 8.8 wt%, and 13.3 wt%) was incorporated and a bicontinuous phase structure (i.e., co-continuous) when higher concentration of CP (i.e., 17.7 wt% and 22.1 wt%) was employed. The results suggest that TPS/PLA/CP biocomposites have potential to be used in the manufacturing of injection-molded articles, particularly when biodegradability and renewability of the material are required.  相似文献   

4.
《先进技术聚合物》2018,29(1):407-416
Graphene nanoplatelets are promising candidates for enhancing the electrical conductivity of composites. However, because of their poor dispersion, graphene nanoplatelets must be added in large amounts to achieve the desired electrical properties, but such large amounts limit the industrial application of graphene nanoplatelets. Multi‐walled carbon nanotubes also possess high electrical conductivity accompanied by poor dispersion. Therefore, a synergistic effect was generated between graphene nanoplatelets and multi‐walled carbon nanotubes and used for the first time to prepare antistatic materials with high‐density polyethylene via 1‐step melt blending. The synergistic effect makes it possible to significantly improve the electrical properties by adding a small amount of untreated graphene nanoplatelets and multi‐walled carbon nanotubes and increases the possibility of using graphene nanoplatelets in industrial applications. When only 1 wt% graphene nanoplatelets and 0.5 wt% multi‐walled carbon nanotubes were added, the surface and volume resistivity values of the composites were much lower than those of the composites that were only added 3 wt% graphene nanoplatelets. Additionally, as a result of the synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes, the composites met the requirements for antistatic materials.  相似文献   

5.
In this paper, fumaric acid (FA) which was a new type of environmental and low‐cost flame retardant was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using limiting oxygen index, cone calorimeter test, smoke density test, and thermogravimetric/Fourier transform infrared spectroscopy. It has been proved that FA could improve the difficulty of the ignition of the sample; the limiting oxygen index value of the sample (FA‐4) increased by 29.7% when 2.0 wt% FA was added to TPU. The cone calorimeter test showed that FA can greatly reduce heat release and smoke production during the combustion process of TPU composites. For example, compared with the pure TPU, the peak heat release rate and total smoke release of the sample (FA‐4) with 2.0 wt% FA were decreased by 50.8% and 51.5% respectively. The results of smoke density test showed that the luminous flux of the samples contained 0.5 wt% FA was increased by 79.2% compared with the pure TPU. The TG results revealed that the sample of FA‐4 had higher char residue content compared with the sample of TPU. The results of thermogravimetric/Fourier transform infrared spectroscopy proved that FA could decrease the initial decomposition temperature for TPU composites and increase the release of CO2 and H2O. All results of test illustrated that FA had good flame‐retardant effect on TPU.  相似文献   

6.
Novel porous aminopropyllsooctyl polyhedral oligomeric silsesquioxane (POSS) modified montmorillonite clay complexes (POSS-Mts) with large interlayer distance and specific surface area have been successfully prepared via ion-exchange reaction and followed by freeze-drying treatment. The morphology of the POSS-Mts is highly influenced by the POSS concentration, pH of the suspension and drying procedure, but the interlayer distance of the POSS-Mts does not change much when the POSS concentration is above 0.4 CEC. The POSS-Mts were used as Sn-catalyst supporters to initiate the ring-opening polymerization of cyclic butylene terephthalate oligomers (CBT) for the first time. No diffraction peak was detected by wide-angle X-ray diffraction for the polymerized composites (pCBT/POSS-Mt), even at 10 wt % loading of POSS-Mt. A clay network rather than exfoliation structure was observed unexpectedly in the composites by transmission electron microscopy. The pCBT/POSS-Mt composite with 10 wt % POSS-Mt was further melt-compounded with commercial PBT resin as a master batch. The tensile properties of the resultant PBT/POSS-Mt composites were highly improved as compared to the pristine PBT due to the homogeneous dispersion of POSS-Mt in the PBT matrix.  相似文献   

7.
This study focused on the fabrication of a composite of polylactic acid fibers reinforced with barium titanate (BT) and obtained by centrifugal spinning. Different concentrations of inorganic powder (5, 10, and 15 wt%) have been added to the polymeric solution and the samples have been studied to monitor any modification in chemical, morphological, thermal, and mechanical properties. Subsequently, samples have been subjected to UV/O3 irradiation at two different times (5 and 10 min) with the aim to verify the resistance to aging, which is considered a key factor for medical applications and outdoor. The presence of BT influenced strongly the structure of the fibers in many aspects. Samples with the lowest amount of BT showed a clear decrease of chemical and consequently of mechanical properties manifested with the breakage of the fibers subjected to treatment. The other composites apparently showed similar chemical properties comparing with the one without fillers but the mechanical properties clearly decreased. However, what emerged from the study is a clear stability during the aging tests promoted by the presence of BT. The samples with 10 and 15 wt% of BT presented chemical, thermal, and mechanical stabilities differently from the other samples. These results suggested that the fillers clearly modified the degree of crystallinity acting as nucleation agents and promoting the development of a stable crystalline phase during the treatment.  相似文献   

8.
《先进技术聚合物》2018,29(9):2545-2552
Although hexagonal boron nitride (h‐BN) has presented a potential prospect in polymer composite fields, undesirable interfacial interaction with polymer matrix that generates serious aggregation of nanomaterials has suppressed its enhancement effect. Moreover, the chemically inert surface of h‐BN also makes the commonly used approach that improves the interfacial interaction between nanofillers and polymeric matrix invalid. Herein, the functionalized modification of chemically inert h‐BN was successfully fabricated by the adsorption of cetyl‐trimethylammonium bromide, with electrostatic interactions. The obtained h‐BN (cetyl‐trimethylammonium bromide‐BN) was well characterized by systematic tests and then added into thermoplastic polyurethane (TPU) matrix. The inclusion of functionalized h‐BN can dramatically improve thermal stability, flame retardant, and mechanical properties of TPU composites. With the incorporation of as low as 4.0 wt% nanofillers, maximal value of heat release rate and total heat release of TPU were reduced by 57.5% and 17.8%, compared with those of pure TPU, respectively. Moreover, tensile strength of TPU composite with a loading of 2.0 wt% was increased by 79.3% in comparison with that of neat TPU. The facile functionalized approach of chemically inert h‐BN paves the way for promising applications of h‐BN in the development of flame retardant polymer materials.  相似文献   

9.
Thermal and mechanical properties of polylactide (PLA) composites with different grades of calcium carbonate, 40 nm and 90 nm nanoparticles, and also with submicron particles, unmodified and modified with calcium stearate or stearic acid, obtained by melt mixing, were compared. Films with amorphous and crystalline matrices were prepared and examined.Tg of PLA in the composites remained unaffected whereas its cold crystallization was enhanced by the fillers and predominantly depended on filler content. Filling decreased thermal stability of the materials but their 5% weight loss temperatures well exceeded 250 °C, evidencing stability in the temperature range of PLA processing. The amorphous nanocomposites with modified nanoparticles exhibited improved drawability and toughness without a significant decrease of tensile strength; nearly two-fold increase of the elongation at break and tensile toughness was achieved at 5 wt% content of the modified nanofiller. Lack of surface modification of the filler, larger grain size with an average of 0.9 μm, and matrix crystallinity had a detrimental effect on the drawability. However, the presence of nanofillers and crystallinity improved tensile modulus of the materials by up to 15% compared to neat amorphous PLA.  相似文献   

10.
The preparation of polyimide (PI) resin with high heat resistance and toughness is a significant challenge. In this study, thermoplastic PI (TPI) was used to toughen thermosetting PIs, and toughened PI (TPI/PI) blends were prepared. The modified PI resin system exhibited good thermal stability, excellent heat resistance, and high toughness. The results indicated that the TPI/PI blends maintained the curing behavior and characteristics of the PI oligomer. The Tg of the cured TPI/PI blend exceeded 395 °C, and the T5% values were in the range of 533–563 °C, suggesting excellent thermal stability and heat resistance. The maximum impact strength was increased by 46% compared with that of pure PI, indicating the excellent toughening effect of the TPI. Carbon fiber-reinforced PI composites were prepared using the toughening system as a matrix. The compression-after-impact values of the carbon fiber-reinforced PI composites were up to 190 MPa, indicating the excellent toughness of the materials.  相似文献   

11.
In this article, oyster shell powder (OSP) was used as fire safety agent with ammonium polyphosphate (APP) in thermoplastic polyurethane (TPU) composites. The synergistic fire safety improvement between OSP and APP was intensively investigated using limiting oxygen index (LOI), UL‐94, smoke density test (SDT), and cone calorimeter test (CCT). There is a good synergistic effect of reducing the fire hazards when OSP was used with APP in TPU. The peak heat release rate (pHRR) of the sample with 2.0‐wt% OSP and 8.0‐wt% APP decreased to 86.8 kW/m2 from 175.7 kW/m2 of the sample with only 10.0‐wt% APP. The SDT results showed that the luminous flux of sample OSP2/APP8 was up to 28.9% at the end of experiment with flame, which was much higher than that of pure TPU (1.5%). The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis/Fourier infrared spectrum analysis (TG‐IR). The result revealed the inert gasses (including CO2 and water vapor) produced by the reaction between OSP and APP. A char formed on the surface of composites, hindered the flame spread, reduced the release of combustible gas, and restricted the precursor of smoke into combustion zone.  相似文献   

12.
This paper investigated the reinforcing effects of a hybrid filler, including talc and exfoliated graphene nanoplatelets (xGnPs), in polypropylene (PP) composites. In order to increase the interphase adhesion, maleic anhydride grafted polypropylene (MAPP) was added as a compatibilizing agent to the PP/talc/xGnP composites. The experiments were designed according to response surface methodology (RSM) to optimize the effects of three variable parameters, namely talc, MAPP and xGnP, on the mechanical properties. In the sample preparation, three levels of filler loading were used for talc (0, 15, 30 wt%), xGnP (0, 0.75, 1.5 wt%) and MAPP (0, 2, 4 wt%). From the analysis of variance (ANOVA), it was found that the talc and xGnP play a significant role in the mechanical properties and morphology of the composites, as proven by scanning electron microscopy (SEM) and differential scanning calorimeter (DSC). In order to simultaneously maximize these mechanical properties, the desirable values of the additives were predicted to be 30 wt% for talc, 4 wt% for MAPP and 0.69 wt% for xGnP. The obtained normal probability plots indicated good agreement between the experimental results and those predicted by the RSM models.  相似文献   

13.
《Solid State Sciences》2012,14(8):1111-1116
Polymer electrolyte has been prepared via solution-casting technique. The polymer electrolytes are formed from polyethylene oxide (PEO) and lithium hexafluorate is used as the doping salt. The conductivity increases from 10−9 to 10−4 S cm−1 upon the addition of various concentrations of salt. The results reveal that the conductivity increases with increasing temperature when the salt concentration increases up to 20 wt% The conductivity for 20 wt% of salt remains similar to the conductivity for 15 wt% of salt at 318 K. Differential scanning calorimetry studies show that the melting transition temperature and crystallinity decreases upon the addition of various concentrations of salt. Thermogravimetric analysis (TGA) results indicate that a significant effect on the thermal stability of polyethylene–lithium salt composites. SEM images reveal that the morphology of polymer electrolyte's surface changes when various concentrations of salt are added into the polymer system.  相似文献   

14.
Polylactide (PLA) being a very brittle biopolymer could be toughened by blending with thermoplastic elastomers such as thermoplastic polyurethane elastomer (TPU) and thermoplastic polyester elastomer (TPE); unfortunately, these blends are immiscible forming round domains in the PLA matrix. Therefore, the purpose of this study was to investigate the effects of using maleic anhydride (MA) compatibilization on the toughness and other properties of PLA blended with TPU and TPE. MA grafting on the PLA backbone (PLA‐g‐MA) was prepared separately by reactive extrusion and added during melt blending of PLA/thermoplastic elastomers. IR spectroscopy revealed that MA graft might interact with the functional groups present in the hard segments of TPU and TPE domains via primary chemical reactions, so that higher level of compatibilization could be obtained. SEM studies indicated that PLA‐g‐MA compatibilization also decreased the size of elastomeric domains leading to higher level of surface area for more interfacial interactions. Toughness tests revealed that Charpy impact toughness and fracture toughness (KIC and GIC) of inherently brittle PLA increased enormously when the blends were compatibilized with PLA‐g‐MA. For instance, GIC fracture toughness of PLA increased as much as 166%. It was also observed that PLA‐g‐MA compatibilization resulted in no detrimental effects on the other mechanical and thermal properties of PLA blends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Balancing the performance, durability and safety requirements of automotive systems with the regulatory landscape in an environment of climate change has accelerated the search for sustainable fiber reinforced polymer composites for automobile structures. Glass fiber reinforced thermoplastic polymer composites (GFRP) are widely used in certain structures like front end modules and liftgate; However, they cannot be used in more demanding applications due to their low mechanical properties. Carbon fiber reinforced thermoplastic polymer composites (CFRP) are promising candidates for applications like bonnet, but their use is constrained by cost. Basalt fiber reinforced thermoplastic polymer composites (BFRP) are sustainable materials that can be positioned between GFRP and CFRP in terms of performance and cost-effectiveness. The mechanical performance of the BFRP depend on the quality of the fiber-matrix interface that aids in efficient load transfer from the matrix to the fiber. Typically, basalt fibers are inert in nature and need treatments to improve its adhesion to polymeric matrices. The major chemical treatments that are reviewed in this article include matrix functionalization, silane treatment, functionalized nanomaterial coating and plasma polymerization. The physical treatments reviewed include plasma treatment and milling. It is evident that chemically treating the basalt fiber with a functionalized nanomaterial yields BFRP with a good stiffness – toughness balance that can be used for challenging metal replacements as also in new emerging areas like sensing and 3D printing.  相似文献   

17.
The thermo-oxidative stability of melt processed polyethylene composites with the two fullerenes C60 and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was studied with the aim of comparing the stabilization effect of both fullerenes on three different polyethylenes (PE). The results obtained show that, irrespective of the specific polyethylene being considered, C60 loadings as low as 1.0 wt% cause a dramatic increase in the thermo-oxidative stability of the corresponding composites (up to 64.8 °C at T2% and 113.8 °C at T5%, TX% being the temperature corresponding to a mass loss of X wt%), in agreement with previous reports. Furthermore, and more importantly, this work shows for the first time that the thermo-oxidation stability effect caused by PCBM is even higher than that of C60, the difference between both being particularly significant in the early stages of degradation, i.e. for mass losses ≤2 wt%. For example, polyethylene composites with 1.0 wt% PCBM show T2% values which are systematically higher than those of the corresponding composites with 1.0 wt% C60, the difference between the T2% values of the two composites being 38.8 °C, 67.1 °C and 26.4 °C in the three different polyethylenes considered. Therefore, when compared with C60, PCBM is particularly more effective at delaying the beginning of the thermo-oxidative degradation. According to our results, PCBM loadings as low as 1.0 wt% can increase the thermo-oxidative stability of polyethylene composites by more than 130 °C and these are, as far as we know, the highest thermo-oxidative stability results induced by nanoparticles ever reported in the literature for polyethylene.  相似文献   

18.
This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral and ammonium polyphosphate (APP) organic additives were studied varying composition of additives in the 80/20 EVA/(xCC + (20 ? x)APP) composites with x denoting 0, 5, 10, 15, and 20 wt%. Thermogravimetric analysis (TGA) revealed that the onset temperature of composites and the remaining residue were increased by combination of APP and CC, while cone calorimetry results were indicative of a promising flame retardancy performance at a given composition of APP and CC. Based on FRI values, we made distinguished samples from flame retardancy performance viewpoint, where the best flame retardancy was obtained by combination of 15 wt% APP and 5 wt% CC, as reflected in FRI value of 3.08. By contrast, samples containing only APP or CC revealed low resistance against flame, as signaled by FRI values of 0.99 and 0.89, respectively. X‐ray diffraction (XRD) analysis was made on remaining residue collected at the end of cone calorimetry measurements. Moreover, Raman analysis confirmed barrier effect of flame retardancy for EVA/(5APP + 15CC) sample, featured by a higher graphitization level as well as a thicker yet more homogenous char layer. Mechanical behavior analysis of composites revealed an acceptable level of properties, particularly high elongation at break, which was almost independent of formulation. However, a minor loss in yield stress was observed, especially for EVA(10CC + 10APP) sample.  相似文献   

19.
In this study, fibre modification technique is performed by coating nano titanium dioxide (TiO2) particles on flax fibres. The fibre surface is treated with silane coupling agents and coated with nanoparticles at weight percentage 0.2, 0.4, 0.6 and 0.8% to develop chemical bonding at the fibre matrix interface. The improved interface is evaluated by performing Mode I, Mode II interlaminar fracture toughness (ILFT), and Dynamic mechanical analysis (DMA). The results indicate that the fibre modified composites with 0.4 wt % and 0.6 wt % coating shows 37% and 24% improvement in Mode I and Mode II ILFT values respectively. The storage modulus from the DMA analysis also exhibits improvement for the fibre modified composites. SEM analysis explains the changes in the fracture mechanism. FTIR analysis provides the details on the fibre coating by nanoparticles.  相似文献   

20.

The objective of this work is the use of cellulose fibers extracted from coir fibers as Janus nanocylinders to suppress the phase retraction and coalescence in poly(lactic) acid/polypropylene bio-blend polymers via prompting the selective localization of cellulose fibers at the interface using chemical modification. The untreated and modified cellulose fibers extracted from coir fibers using a silane molecule (tetraethoxysilane) were used as reinforcement and as Janus nanocylinder at two weight contents (2.5 wt% and 5 wt%) to manipulate the morphology of the bio-blends. Their bio-composites with PLA-PP matrix were prepared via melt compounding (at PLA/PP: 50/50). The treatment effect on component interaction and the bio-composites properties have been studied via Scanning electron microscopy, infrared spectroscopy, and differential calorimetry analysis. The mechanical and rheological properties of nanocomposites were similarly assessed. Young's modulus and tensile strength of PLA-PP nanocomposites reinforced by silanized cellulose fibers show a great enhancement as compared to a neat matrix. In particular, there was a gain of 18.5% in Young's modulus and 11.21% in tensile strength for silanized cellulose fiber-based bio-blend composites at 5 wt%. From the rheological point of view, it was found that the silanized cellulose fibers in PLA-PP at both fibers loading enhances the adhesion between both polymers leading to tuning their morphology from sea-island to the continuous structures with the appearance of PLA microfibrillar inside of bio-composites. This change was reflected in the relaxation of the chain mobility of the bio-blend composites.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号