首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a numerical approach of fatigue growth analysis of cracks emanating from a hole in infinite elastic plate subjected to remote loads. It involves a generation of Bueckner’s principle and a hybrid displacement discontinuity method (a boundary element method) proposed recently by the senior author of the paper. Because of an intrinsic feature of the boundary element method, a general crack growth problem can be solved in a single region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is modeled conveniently by adding new boundary elements on the incremental crack extension to the previous crack boundaries. As an example, fatigue growth process of an inclined crack in an infinite plate under uniaxial cycle load is modeled to illustrate the effectiveness of the numerical approach. In addition, fatigue growth of cracks emanating from a circular hole in infinite elastic plate subjected to remote loads is investigated by using the numerical approach. Many numerical results are given  相似文献   

2.
闫相桥  刘宝良  胡照会 《力学学报》2010,42(6):1231-1236
提出了一个平面弹性体多裂纹疲劳扩展模型. 它主要涉及到复合型加载情况下多裂纹尖端疲劳扩展的数学模型及杂交位移不连续法(一种边界元法). 在数值模拟中, 对每一裂纹扩展增量分析时,在其先前的边界上增添裂纹扩展增量, 且只对新增添的裂纹扩展增量划分单元, 同时, 按照这种边界元法的实施方法对一些单元特征进行调整, 就可以方便地模拟裂纹扩展. 用这种数值方法模拟了巴西圆盘试样中心斜裂纹疲劳扩展轨迹,数值结果说明了预报模型的有效性, 揭示了裂纹体几何对疲劳扩展的影响.   相似文献   

3.
FATIGUE GROWTH MODELING OF MIXED-MODE CRACK IN PLANE ELASTIC MEDIA   总被引:1,自引:0,他引:1  
This paper presents an extension of a displacement discontinuity method with cracktip elements (a boundary element method) proposed by the author for fatigue crack growth analysis in plane elastic media under mixed-mode conditions. The boundary element method consists of the non-singular displacement discontinuity elements presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or right crack-tip element is placed locally at the corresponding left or right crack tip on top of the non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the maximum circumferential stress criterion. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the numerical approach. Crack growth is modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characteristics of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the fatigue growth process of cracks emanating from a circular hole in a plane elastic plate is simulated using the numerical simulation approach.  相似文献   

4.
This paper presents an extension of a boundary element method to fatigue growth analysis of mixed-mode cracked plane elastic bodies. The method consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity element due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the modified maximum strain energy density criterion. In numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the boundary element method. Crack growth is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. Some numerical results of fatigue growth in a plane elastic plate with a center-inclined crack under uniaxial cyclic loading are given.  相似文献   

5.
应用一种边界元方法来研究内部压力作用下矩形板中源于椭圆孔的分支裂纹。该边界元方法由Crouch与Starfied建立的常位移不连续单元和笔者最近提出的裂尖位移不连续单元构成。在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界。本数值结果进一步证实这种数值方法对计算有限大板中复杂裂纹的应力强度因子的有效性,同时该数值结果可以揭示裂纹体几何对应力强度因子的影响。  相似文献   

6.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

7.
This paper is concerned with the stress intensity factors (SIFs) of cracks emanating from an elliptical hole in an infinite or a finite plate under biaxial loads by using a boundary element method, which consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. A few numerical examples are included to show that the present approach is very efficient and accurate for the calculating the SIFs of crack problems in an infinite or a finite plate. The present numerical results of cracks emanating from an elliptical hole under biaxial loads can reveal the effect of the elliptical aspect ratio and the transverse load on the SIFs.  相似文献   

8.
双轴载荷作用下源于椭圆孔的分支裂纹的一种边界元分析   总被引:2,自引:1,他引:1  
利用一种边界元方法来研究双轴载荷作用下无限大板中源于椭圆孔的分支裂纹.该边界元方法由Crouch与Starfied建立的常位移不连续单元和笔者提出的裂尖位移不连续单元构成.在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界,文中算例说明本数值方法对计算平面弹性裂纹的应力强度因子是非常有效的。该文对双轴载荷作用下无限大板中源于椭圆孔的分支裂纹的数值结果进一步证实本数值方法对计算复杂裂纹的应力强度因子的有效性,同时该数值结果可以揭示双轴载荷及裂纹体几何对应力强度因子的影响。  相似文献   

9.
多裂纹扩展分析的边界元方法   总被引:4,自引:0,他引:4  
采用边界元数值模拟和即时等效材料常数计算相结合的办法,只需模拟一个裂纹的扩展情况便可预测裂纹体的整体响应。针对准脆性材料的特点,采用粘性裂纹模型模拟裂纹开裂行为;采用二次裂纹扩展量作为增量控制变量,避免了软化及失稳分析中用力或位移作控制变量时遇到的困难。针对二交裂纹扩展路径未知情况,给出了预测和修正裂纹开裂界面的迭代技术,分析计算了含多个规则分布裂纹石膏板受压时的响应,并与实验结果进行了比较。结果表明该文方法的可行性与有效性。  相似文献   

10.
The authors have developed a new line-spring boundary element method in thepresent paper,which combines the advantage of the line-spring model with that of theboundary element method.This method reduces the three-dimension problem of thesurface cracks into a quasi-one-dimension problem and can be used to analyze thesurface cracked plate under various loading conditions.In this paper theoreticalanalyses and numerical verifications are carried out.The calculated results arereported,which indicate that the present method is efficient and can be used to analyzethe surface crack problem on a personal computer.  相似文献   

11.
Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.  相似文献   

12.
This paper deals with such a kind of surface crack problem with an approximately same depth, which is called a liked-plane crack problem. Based on the previous investigations on internal rectangular crack and surface rectangular crack in infinite solid in tension and a hybrid displacement discontinuity method (a boundary element method) proposed recently by Yan, a numerical approach for the liked-plane crack problem in hand is presented. Numerical examples are given to illustrate the numerical approach is simple, yet accurate for calculating the SIFs of a liked-plane crack. Specifically, a pair of cracks emanating from a surface elliptical hole in infinite body in tension are investigated in detail.  相似文献   

13.
梯度材料中矩形裂纹的对偶边界元方法分析   总被引:2,自引:0,他引:2  
肖洪天  岳中琦 《力学学报》2008,40(6):840-848
采用对偶边界元方法分析了梯度材料中的矩形裂纹. 该方法基于层状材料基本解,以非裂纹边界的位移和面力以及裂纹面的间断位移作为未知量. 位移边界积分方程的源点配置在非裂纹边界上,面力边界积分方程的源点配置在裂纹面上. 发展了边界积分方程中不同类型奇异积分的数值方法. 借助层状材料基本解,采用分层方法逼近梯度材料夹层沿厚度方向力学参数的变化. 与均匀介质中矩形裂纹的数值解对比,建议方法可以获得高精度的计算结果. 最后,分析了梯度材料中均匀张应力作用下矩形裂纹的应力强度因子,讨论了梯度材料非均匀参数、夹层厚度和裂纹与夹层之间相对位置对应力强度因子的影响.   相似文献   

14.
Three-dimensional edge cracks are analyzed using the Self-Similar Crack Expansion (SSCE) method with a boundary integral equation technique. The boundary integral equations for surface cracks in a half space are presented based on a half space Green's function (Mindlin, 1936). By using the SSCE method, the stress intensity factors are determined by the crack-opening displacement over the crack surface. In discrete boundary integral equations, the regular and singular integrals on the crack surface elements are evaluated by an analytical method, and the closed form expressions of the integrals are given for subsurface cracks and edge crakcs. This globally numerical and locally analytical method improves the solution accuracy and computational effort. Numerical results for edge cracks under tensile loading with various geometries, such as rectangular cracks, elliptical cracks, and semi-circular cracks, are presented using the SSCE method. Results for stress intensity factors of those surface breaking cracks are in good agreement with other numerical and analytical solutions.  相似文献   

15.
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements. The project supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.  相似文献   

16.
In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.  相似文献   

17.
A general method is presented for solving the plane elasticity problem of finite plateswith multiple microcracks. The method directly accounts for the interactions between differentmicrocracks and the effect of outer boundary of a finite plate. Analysis is based on a superpositionscheme and series expansions of the complex potentials. By using the traction-free conditions oneach crack surface and resultant forces relations along outer boundary, a set of governingequations is formulated. The governing equations are solved numerically on the basis of aboundary collocation procedure. The effective Youngs moduli for randomly oriented cracks andparallel cracks are evaluated for rectangular plates with microcracks. The numerical results arecompared with those from various micromechanics models and experimental data. These resultsshow that the present method provides a direct and efficient approach to deal with finite solidscontaining multiple microcracks.  相似文献   

18.
采用四步法计算了考虑循环载荷中压应力影响的正交异性钢桥面板的肋-面板焊缝表面裂纹扩展。第一步是基于正交异性钢桥面板的疲劳分析模型,计算肋-面板焊缝处的应力,第二步是通过肋-面板焊缝的三维局部模型,用Schwartz-Neumann交替法计算焊缝表面裂纹的应力强度因子分布,第三步是用二维断裂力学模型和增量塑性损伤模型,计算循环载荷中的压应力对裂纹扩展的影响,第四步是用第二步中的三维裂纹分析结果和第三步中的二维断裂力学模型得到的裂纹扩展公式,计算钢桥面板的肋-面板焊缝表面裂纹扩展。计算结果表明,对应于正交异性钢桥面板肋-面板焊缝处的循环应力,本文所用模型的裂纹尖端反向塑性区导致裂纹扩展率增加50%以上。研究结果为正交异性钢桥面板肋-面板焊缝裂纹的疲劳寿命分析提供了研究基础。  相似文献   

19.
In this paper, a numerical analysis of perpendicular cracks under general in-plane loading is performed by using a hybrid displacement discontinuity method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results show that the numerical approach is simple, yet very accurate for calculating numerically stress intensity factors for perpendicular cracks under general in-plane loading.  相似文献   

20.
Multiple crack propagation in a strip caused by thermal shock   总被引:1,自引:0,他引:1  
The time-dependent stress intensities due to quenching are calculated by the boundary element method for an array of parallel and equal spaced edge cracks in a long strip. Analyzed is the sequence of crack pattern formation. The predicted patterns have essential features in common with the experimental ones. This tends to support a recently developed approach for analyzing single and multiple crack growth under thermal shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号