首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用模压法制备了蜂窝状Ho改性的Fe-Mn/TiO_2催化剂,研究了结构助剂、黏合剂和造孔剂等对成型催化剂低温选择催化还原(SCR)脱硝性能的影响。优选出一套理想的成型参数:水粉质量比为40%且逐次分批加入;结构助剂玻璃纤维的用量为10%(质量分数);黏合剂羧甲基纤维素的用量为5%(质量分数);助挤剂甘油的添加量为10%(质量分数)且分批加入;造孔剂活性炭粉的用量为2%(质量分数)。该蜂窝状催化剂在120℃下脱硝率维持在90%以上,并且在SO_2体积分数低于0.02%时具有一定的抗硫抗水性。表征结果表明,成型后蜂窝状催化剂比表面积降低,颗粒分散程度明显减弱,并且表面酸量和表面Mn~(4+)含量下降,对催化活性有一定的影响。  相似文献   

2.
SCR催化剂的组成对其脱硝性能的影响   总被引:7,自引:0,他引:7  
在以TiO2为载体的基础上,考察了活性组分WO3和V2O5的质量分数以及SiO2和Al2O3的加入对SCR催化剂脱硝性能的影响,筛选出的最佳催化剂组成与某商业催化剂的催化活性、制备方法和催化剂组成进行比较。结果表明,SiO2和Al2O3的加入会降低催化剂的脱硝性能,筛选出的最佳催化剂组成为0.5%V2O5~10%WO3/TiO2;与实验室通过溶胶 凝胶法制备载体然后负载活性组分的制备方法不同,商业催化剂是将粒径均匀的锐钛矿型TiO2与玻璃纤维(主要成分为SiO2和Al2O3)通过黏合剂混合制备成型的催化剂载体,然后负载活性组分;由于制备方法和催化剂组成等方面的较大差异,0.5%V2O5~10%WO3/TiO2在低于603K时具有很好的NO脱除率,而商业催化剂在实际烟气温度(603K~663K)范围内,能稳定保持90%以上脱硝率。  相似文献   

3.
以白云鄂博稀土尾矿粉末为研究原料,通过Solidworks绘制,CoLiDO桌面3D打印机打印出成型模具,采用模具压制法将组成物料成型为蜂窝状脱硝催化剂。考察了不同粘结剂和不同物料配比对稀土尾矿基蜂窝状脱硝催化剂影响,并对成型催化剂进行维氏硬度仪、万能试验机测试和BET,SEM-EDS,XRD及TG等表征分析。研究结果表明:磷酸二氢铝溶液为最佳的粘结剂且最佳的物料配比为:稀土尾矿基粉末:拟薄水铝石粉末∶黏土=2∶4∶3;成型的蜂窝状脱硝催化剂在反应温度800℃时脱硝催化活性高达88.60%,与传统粘结剂硅酸钠溶液相比,选用磷酸二氢铝溶液结合拟薄水铝石粉末所成型的蜂窝状脱硝催化剂在最佳工况下脱硝活性提升30%以上,且具有抗硫性与脱硝稳定性;在可以保证机械性能良好的情况下,原本比表面小、表面光滑的稀土尾矿经成型后转化为无规则、多孔状蜂窝体(成型样比表面积最大为10.28m~2·g-1),因两种铝源在500℃焙烧熔化为γ-Al2O3,导致稀土尾矿在γ-Al2O3下活位点暴露,放大其脱...  相似文献   

4.
以聚乙烯醇(PVA)或拟薄水铝石(SB粉)为涂覆助剂,采用超声波辅助分散法将Cu-SSZ-13分子筛涂覆于蜂窝状堇青石(Cordierite)上,制备了整体式堇青石负载的Cu-SSZ-13分子筛催化剂(Cu-SSZ-13/Cordierite),用于氨选择性催化还原(NH3-SCR)脱硝,并结合XRD、氮气吸附、SEM及H2-TPR等表征手段,研究了涂覆助剂对该催化剂的Cu-SSZ-13涂层稳定性、NH3-SCR脱硝活性、水热稳定性和抗SO2毒化能力的影响。结果表明,以PVA为涂覆助剂制备的整体式Cu-SSZ-13(PVA)/Cordierite催化剂,其Cu-SSZ-13涂层稳定、脱落率低,选择性催化还原脱硝活性与Cu-SSZ-13原粉基本相当;同时,该Cu-SSZ-13(PVA)/Cordierite催化剂也具有较好的耐高温水热稳定性和抗硫中毒能力,在移动源和固定源脱硝方面有较好应用前景。  相似文献   

5.
用浸渍法制备Sb-V2O5-TiO2催化剂,在质量分数3%V2O5-TiO2催化剂基础上,研究锑的负载量、焙烧温度对催化剂活性的影响。结果表明,锑的负载量为11%(质量分数),500 ℃焙烧的催化剂具有最佳的SCR活性,在进口浓度为0.07% NOx、O2体积分数5%、空速27 000 h-1的条件下,170 ℃时脱硝活性可达92%。对催化剂进行H2-TPR表征,发现锑修饰后的催化剂氧化能力增强,使催化剂效率上升。通过XPS和NH3-TPD表征测试,催化剂表面的锑主要以五价的形式存在且随着锑负载量的增加催化剂表面酸性增强。考察SO2和H2O对催化剂的影响发现,加锑催化剂具有一定的抗硫抗水性能。通过FT-IR、TG、孔隙结构测试表明,锑的加入可以有效地抑制硫酸铵盐在催化剂表面的聚集,从而延长催化剂的寿命。  相似文献   

6.
采用共沉淀-微波热解法,制备一系列Sn、Ti掺杂改性γ-Fe2O3催化剂样品(γ-Fe0.95Ti0.05Oz、γ-Fe0.95Sn0.05Oz、γ-Fe0.95Sn0.025Ti0.025Oz),研究Sn、Ti掺杂对γ-Fe2O3催化剂SCR脱硝活性的影响,借助XRD、N2吸附-脱附、EDS及SEM等手段对催化剂晶相、孔结构、表面元素及微观形貌等进行表征分析。结果表明,Sn、Ti掺杂后以无定形态高度分散于γ-Fe2O3晶格中,与Fe形成固溶体;单一助剂Ti掺杂制得的γ-Fe0.95Ti0.05Oz 最高脱硝效率达98.3%,且在250~400 ℃脱硝效率保持90%以上;Ti掺杂可以细化γ-Fe2O3晶粒,优化2~100 nm孔径孔隙结构,抑制α-Fe2O3的生成,促使γ-Fe2O3形成细致、均匀、独立的球状颗粒,对SCR反应有利;Sn掺杂则使催化剂出现严重烧结现象,导致2~6 nm孔径孔结构贫乏,对SCR脱硝反应不利;在Sn、Ti协同作用下,催化剂表面氧铁原子物质的量比由1.83降至1.33,表面晶格氧显著下降,一定程度上限制了SCR反应速率的提高。  相似文献   

7.
考察了铁、锡助剂对蜂窝状活性炭担载MnOx-CeO2(MnOx-CeO2/ACH)催化剂的低温脱硝活性及抗硫性能的影响。结果表明,添加FeOx助剂,有利于改善MnOx和CeO2在ACH载体表面的分散性,使得催化剂的脱硝活性在80~200℃随反应温度的升高而增加,且抗SO2毒化性能提高;SnOx助剂的添加,使得催化剂在较高温区仍具有较高脱硝活性,并表现出良好的抗SO2毒化性能,在250℃时NO转化率由无SO2条件下的98.6%略降至SO2存在时(700min)的87.8%。  相似文献   

8.
富含过渡元素的菱铁矿是用于制备选择性催化还原(SCR)脱硝催化剂的理想材料。在本研究中,对菱铁矿掺杂了Mn和Ce,并研究了Mn-Ce共掺杂改性菱铁矿在NH3-SCR反应中去除NOx的活性。结果表明,经过450℃煅烧后菱铁矿的主要成分FeCO3能够转化为Fe2O3。菱铁矿掺杂Mn和Ce后能够提高比表面积和表面酸度,降低硫酸铵盐在催化剂表面上的热稳定性。因此,Mn-Ce共掺杂改性菱铁矿催化剂表现出较高的SCR脱硝活性和抗硫性。3% Mn1% Ce-菱铁矿催化剂在脱硝效率高于90%的温度窗口能够拓宽至180-300℃,同时在引入SO2 7.5 h后该催化剂的脱硝效率仍高于75%。  相似文献   

9.
以醋酸锰为前驱物通过浸渍法制备了MnOx/TiO2催化剂,用WO3对载体进行改性制得一系列MnOx-WO3/ TiO2催化剂,采用X射线衍射(XRD)、比表面积测定(BET)、拉曼光谱(LRS)、原位红外(FT-IR)光谱等表征技术进行相关的微观表征分析,同时在模拟氨气选择性催化还原NOx(NH3-SCR)的反应条件下对催化剂的脱硝反应活性进行了考察。研究表明,添加5%的WO3拓展了载体的比表面积,提高了催化剂的抗热性,增加了催化剂表面的Brnsted酸位,拓宽其选择性催化还原脱硝活性温度窗口,对MnOx/TiO2催化剂有很好的改性作用;先钨后锰的负载顺序优于先锰后钨;随着温度的升高,化学催化反应速率提高,催化剂表面NH3吸附峰呈减弱或消失趋势,故催化剂脱硝活性温度曲线呈中间高、两头低。  相似文献   

10.
在0 到12 mL·L-1 (体积分数φ=0.00%-1.20%) 范围内考察了不同H2S 浓度对25% (质量分数, w)MoO3/Al2O3和5% (w) CoO-25%MoO3/Al2O3催化剂甲烷化性能的影响. 结果表明, 5%CoO-25%MoO3/Al2O3的甲烷化活性随H2S浓度的增加单调上升, 而25%MoO3/Al2O3对H2S浓度并不敏感. 对比这两种催化剂发现, 只有在H2S浓度高于0.40% (φ) 时, 在25%MoO3/Al2O3中添加Co助剂才会有促进作用; H2S浓度低于0.40% (φ)时, Co助剂会抑制25%MoO3/Al2O3催化剂的甲烷化活性. 分别对反应前后的催化剂表征发现, H2S浓度的改变不会对两种催化剂的物理结构产生明显的影响, 而是通过影响催化剂表面的金属硫化物活性位来影响催化剂的甲烷化性能. 耐硫甲烷化反应体系中较高的硫含量下Co助剂才表现出对25%MoO3/Al2O3催化剂的促进作用. 该研究明确了在MoO3/Al2O3催化剂中添加Co助剂的硫化氢浓度范围, 为工业上选择合适的催化剂提供了依据.  相似文献   

11.
以Ho改性Fe-Mn/TiO_2低温SCR脱硝催化剂为研究对象,通过活性评价和一系列表征技术对其低温抗硫性能和催化剂的热还原再生进行研究。结果表明,硫酸铵((NH_4)_2SO_4)在催化剂表面的沉积以及活性组分硫酸化(MnSO_4)是催化剂硫中毒的主要原因。当烟气中的SO_2体积分数低于0.04%时,Fe_(0.3)Ho_(0.1)Mn_(0.4)/TiO_2催化剂呈现出良好的抗硫性。在此条件下,当切断SO_2的供应时催化剂的脱硝活性可获得显著恢复。当通入的SO_2体积分数增加至0.1%时,催化剂会发生不可逆失活。在体积分数5%NH_3气氛下,失活催化剂经过350℃的热还原再生处理60 min后,其微观结构和理化性质能够得到明显恢复,且NO_x转化率可以回升至80%左右。  相似文献   

12.
A sample of sulfated anatase TiO2 with high-energy (001) facets (TiO2-001) was prepared by a simple one-step hydrothermal route using SO42– as a morphology-controlling agent. After doping ceria, Ce/TiO2-001 was used as the catalyst for selective catalytic reduction (SCR) of NO with NH3. Compared with Ce/P25 (Degussa P25 TiO2) and Ce/P25-S (sulfated P25) catalysts, Ce/TiO2-001 was more suitable for medium- and high-temperature SCR of NO due to the high surface area, sulfation, and the excellent properties of the active-energy (001) facets. All of these facilitated the generation of abundant acidity, chemisorbed oxygen, and activated NOx-adsorption species, which were the important factors for the SCR reaction.  相似文献   

13.
陈磊  翁鼎  汪家道  翁端  曹丽 《催化学报》2018,39(11):1804-1813
在铈钛基NH3-SCR催化材料中,改性元素对催化材料的酸性位和氧化还原性能的影响较大.本文采用过量浸渍法分别制备了CeO2-TiO2(CeTi)和CeO2/WO3-TiO2(CeWTi)催化剂,研究了CeWTi催化材料结构、酸性位及氧化还原性能对NH3-NO/NO2 SCR反应性能的影响.结果发现,CeTi和CeWTi样品均有较优异的NH3-NO/NO2 SCR催化性能,后者略高.WO3的加入增加了催化材料的表面酸性,对其氧化还原性能影响不大.通过对反应中间物种NH4NO3的研究,发现NH4NO3的分解主要与氧化还原性能相关,而NO还原NH4NO3的反应需要氧化还原能力和酸性位共同作用,即在氧化还原性能差异不大的条件下,酸性对该反应起到重要作用.而该反应也是NH3-NO/NO2 SCR的限速步骤,这是CeWTi催化材料活性高于CeTi催化材料的原因.同时,为了获得NH3-NO/NO2 SCR反应的高活性,NO2:NO比例宜为1:1.然而现实情况中,预氧化催化材料的氧化活性、NOx浓度、温度等变量使得准确控制NO2的比例较难,因此,深入了解NO2浓度对NH3–NO/NO2 SCR反应的影响至关重要.本文探讨NO2:NO的比例、O2浓度等对NH3-NO/NO2 SCR反应性能的影响;并研究了不同NO2含量条件下NH3-NO/NO2 SCR反应网络.通过分析CeWTi材料上NH3-NO/NO2 SCR反应网络可知,当NO与NO2比例为1:1时,NH3-SCR催化活性最高,并以快速SCR形式进行;当NO与NO2比例为1:1消耗完全之后,剩余的NO或NO2各自独立以标准或慢速SCR进行,不影响其本来的反应活性.催化材料的标准SCR、快速SCR和慢速SCR均取决于材料表面酸度和氧化还原性能,但快速SCR和慢速SCR对材料这两方面性能的要求相对较低.同时O2并不参与快速和慢速SCR,而NO2可以取代O2作为SCR反应中主要的氧化剂,氧化Ce4+为Ce3+,甚至比O2和NO再氧化活性位的能力更强,保持催化材料的高催化活性.低温条件时,慢速SCR和快速SCR反应均在材料表面生成硝酸铵中间物种,但由于慢速SCR气氛中缺乏NO将硝酸铵还原,进而引发快速SCR反应,因此材料表面快速SCR的NOx转化率要高于慢速SCR反应;高温条件下,由于硝酸铵容易热分解,导致硝酸铵的抑制效应不太明显.NH4NO3分解是NO2含量升高后N2O的形成的主要途径.  相似文献   

14.
In this study, a MnOx@TiO2 core-shell catalyst prepared by a two-step method was used for the low-temperature selective catalytic reduction of NOx with NH3. The catalyst exhibits high activity, high stability, and excellent N2 selectivity. Furthermore, it displays better SO2 and H2O tolerance than its MnOx, TiO2, and MnOx/TiO2 counterparts. The prepared catalyst was characterized systematically by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman, BET, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and H2 temperature-programmed reduction analyses. The optimized MnOx@TiO2 catalyst exhibits an obvious core-shell structure, where the TiO2 shell is evenly distributed over the MnOx nanorod core. The catalyst also presents abundant mesopores, Lewis-acid sites, and high redox capability, all of which enhance its catalytic performance. According to the XPS results, the decrease in the number of Mn4+ active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2. The core-shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.  相似文献   

15.
Simultaneous NOx reduction and soot combustion over a commercial vanadia-based selective catalytic reduction (SCR) catalyst were investigated. Carbon black was used as model soot. The impact of the contact intensity between carbon and catalyst was studied. The experiments appeared as promising results for the utilization of vanadia-based SCR catalysts in SCR on filter system as, in the SCR operating temperature range (250–400 °C), no significant impact of the presence of carbon black on NOx reduction was observed. However, a decrease in the specific carbon oxidation rate was highlighted. This latter increases with the contact between carbon and catalyst and is attributed to a lack of NO2, consumed by the fast SCR reaction. At temperatures greater than 400 °C, the contact between carbon particles and the SCR catalyst partially inhibits the NOx reduction, whereas it exhibits a catalytic effect on the carbon oxidation rate. The tighter the contact between the two materials, the more significant is this behavior. A redox mechanism, which competes with the redox cycle of the SCR mechanism, was proposed. The impregnation of a V-based SCR catalyst with 2 wt % of calcium was also performed. A drastic loss of DeNOx activity was observed, whereas the effect of the contact between carbon and catalyst was reduced.  相似文献   

16.
Mesoporous WO3–TiO2 support was synthesized by hydrothermal method, mesoporous V2O5/WO3–TiO2 catalyst was synthesized by impregnation method and used for selective catalytic reduction (SCR) of NOx with a excellent NOx conversion at a wider operating temperature ranging from 200 to 460?°C. In the range of 260–440?°C, NOx conversion reached to 98.6%, and nearly a complete conversion. Even with the existence of 300 ppm SO2, NOx conversion was only a little decline. The catalyst was characterized by a series of techniques, such as XRD, BET, XPS, TEM, Raman and H2-TPR. It was concluded that V2O5/WO3–TiO2 catalyst was ascribe to antase TiO2, and also the high crystallinity of anatase TiO2 could improve the SCR performance. More interested, V2O5/WO3–TiO2 catalyst exhibited the typical mesoporous structure according to the BET results. In addition, the TEM results indicated that the active components of V and W were well-dispersed on the surface of TiO2, while the enhancement of dispersion could improve the activity of catalysts. More importantly, the concentration ratio of V4+/(V5+?+?V4+?+?V3+) performed the key role in improving the activity of V2O5/WO3–TiO2 catalyst.  相似文献   

17.
The catalytic properties of the Mn-Fe-Beta system with Mn contents in the range 0.1–16 wt.% were studied in the selective catalytic reduction (SCR) of NO x with ammonia. The catalyst structure was investigated using IR spectra of adsorbed NO, temperature-programmed reduction with hydrogen (H2-TPR), X-ray diffraction analysis, and ESR. The use of manganese as a promoter substantially increases the activity of iron-containing catalysts in the SCR of NO x with ammonia. At low contents (<2 wt.%), Mn exists in the cation form and the catalytic activity of the Mn-Fe-Beta system does not increase. At a higher content of Mn, clusters MnO x begin to form, which are highly active in the oxidation of NO to NO2 and the low-temperature catalytic activity of the Mn-Fe-Beta system increases. The observed increase in the low-temperature catalytic activity in the process of SCR of NO x with ammonia is related to a change in the reaction route. The MnO x clusters favor the oxidation of NO and the iron cations facilitate the reaction of “fast” SCR.  相似文献   

18.
《中国化学快报》2021,32(8):2509-2512
MnO_x-CeO_2 catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_x by NH_3.A counterpart sample(Cop-3 Mn1 Ce) was prepared by the NH_3·H_2 O co-precipitation method for comparison purpose.Combining the results of physicochemical properties characterization and performance test,we find that the 3 Mn1 Ce-Ac catalyst with some nanorod structures is highly active for the deNOx process.The SCR activity of the 3 Mn1 Ce-Ac catalyst is more admirable than the 3 Mn1 Ce-N and the Cop-3 Mn1 Ce catalysts due to plentiful Lewis acid sites,excellent low-temperature reducibility,and superior surface area resulted from O_2 generation during the pre paration procedure.The 3 Mn1 Ce-Ac still exhibits the greatest performance for the deNOx process when gaseous acetone is in the SCR feed gas.The NO_x conversion and N_2 selectivity over the 3 Mn1 Ce-Ac are both improved by gaseous acetone above150℃ due to the inhibition of SCR undesired side reactions(NSCR C-O reactions) and "slow-SCR" process.  相似文献   

19.
Selective catalytic reduction (SCR) with ammonia has been considered as the most promising technology, as its effect deals with the NOX. Novel Fe-doped V2O5/TiO2 catalysts were prepared by sol–gel and impregnation methods. The effects of iron content and reaction temperature on the catalyst SCR reaction activity were explored by a test device, the results of which revealed that catalysts could exhibit the best catalytic activity when the iron mass ratio was 0.05%. It further proved that the VTiFe (0.05%) catalyst performed the best in denitration and its NOX conversion reached 99.5% at 270 °C. The outcome of experimental procedures: Brunauer–Emmett–Teller surface area, X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and adsorption (H2-TPR, NH3-TPD) techniques showed that the iron existed in the form of Fe3+ and Fe2+ and the superior catalytic performance was attributed to the highly dispersed active species, lots of surface acid sites and absorbed oxygen. The modified Fe-doped catalysts do not only have terrific SCR activities, but also a rather broad range of active temperature which also enhances the resistance to SO2 and H2O.  相似文献   

20.
A series of Ce–MnO x /TiO2 catalysts were prepared using a novel sol–gel template method and investigated for low-temperature selective catalytic reduction (SCR) of NO with NH3 at temperatures ranging from 353 to 473 K. The 0.07Ce–MnO x /TiO2 catalyst showed the highest activity and best resistance to SO2 poisoning. The structure and properties of the catalysts were characterized using X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), thermogravimetry (TG)–differential scanning calorimetry (DSC)–mass spectroscopy (MS), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) measurements, H2-temperature-programmed reduction (TPR), and NH3-temperature-programmed desorption (TPD). The superior catalytic activity of the 0.07Ce–MnO x /TiO2 catalyst was probably due to a change in the active components, an increase in surface active oxygen and surface acid sites, and lower crystallinity and larger surface area with Ce doping. Furthermore, the reduction ability also became stronger. The SO2 poisoning resistance of the 0.07Ce–MnO x /TiO2 catalyst improved because doping with Ce can effectively decrease the formation of ammonium salt on the catalyst surface and the sulfation of MnO x . In situ diffuse-reflectance infrared Fourier-transform (DRIFT) spectroscopy experiments indicated that addition of Ce could promote adsorption of NH3 and inhibit generation of some nitryl species. The SCR reactions over the catalysts mainly followed the Eley–Rideal mechanism accompanied with a partial Langmuir–Hinshelwood mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号