首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyols are being used in a wide range of industrial applications including surfactants and precursors for grafted polymers. The characterization of polyols is of significance in correlating compositions and structures with their properties. We illustrate two real world examples where traditional analytical methods including GPC and NMR failed to reveal compositional differences, but the combination of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), electrospray ionization mass spectrometry (ESI MS), and MS/MS can produce compositional information required for problem solving. The first example involves failure analysis of four ethylene oxide and propylene oxide (EO/PO) copolymer products. The results from the mass spectrometry analysis unequivocally demonstrate that one of the samples has a small variation in copolymer composition, leading to its abnormal activity. The second example is in the area of deformulation of complex polyol mixtures. Two samples displaying similar properties and activities were found to be two different polyol blends. One of the samples is a more cost-effective product. These examples demonstrate that MALDI, ESI MS, and MS/MS should be seriously considered as an integrated component of an overall polyol characterization program in product failure analysis and deformulation.  相似文献   

2.
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly developed type of MALDI high-resolution time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the structural and compositional characterization of polymers. To create a graphical distribution of polymer components on a two-dimensional plot converted from complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of the repeating units of a given polymer, components with common repeat units lined up in the horizontal direction on the KMD plot, whereas those components with different structures were shifted vertically. This combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene oxide)/poly(propylene oxide) block copolymers, and profiling of the end-group distribution of poly(ε-caprolactone)s synthesized under different conditions.
?  相似文献   

3.
A low molecular weight predominantly polyolefin copolymer of isobutylene and para methylstyrene (IMS) was studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Average composition information derived from the spectra was skewed to higher para methylstyrene (pMS) content as compared to that obtained using multiple NMR techniques, and drifted towards lower pMS incorporation at higher oligomer lengths. Although both observations were initially attributed in total to an inability to ionize the isobutylene component, comparison with subsequent field desorption (FD) mass spectrometry results gave similar values to that obtained via MALDI, even though FD ionizes oligomers not detected by MALDI. Instead, the compositional drift observed with MALDI roughly mirrored the mass distribution, and was determined to arise from a mass bias effect in oligomer ionization and detection. Composition with respect to oligomer mass was found to be relatively constant, although similarly higher in pMS content. Comparison of experimental peaks with a Bernoullian statistical model revealed severe overrepresentation of higher pMS composition oligomers with regard to the calculated distribution. This discrepancy is attributed to preferential ionization of oligomers with greater pMS content, and likely results in the observed difference between MALDI and NMR compositions.  相似文献   

4.
Four poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers with different molecular weights and PPO/PEO composition ratios were synthesized. The characterization of the PEO-PPO-PEO triblock copolymers was studied by surface tension measurement, UV-vis spectra, and surface pressure method. These results clearly showed that the CMC of PEO-PPO-PEO was not a certain value but a concentration range, in contrast to classical surfactant, and two breaks around CMC were reflected in both surface tension isotherm curves and UV-vis absorption spectra. The range of CMC became wider with increasing PPO/PEO composition ratio. Surface pressure Pi-A curves revealed that the amphiphilic triblock copolymer PEO-PPO-PEO molecule was flexible at the air/water interface. We found that the minimum area per molecule at the air/water interface increased with the proportion of PEO chains. The copolymers with the same mass fractions of PEO had similar slopes in the isotherm of the Pi-A curve. From the demulsification experiments a conclusion had been drawn that the dehydration speed increased with decreased content of PEO, but the final dehydration rate of four demulsifiers was approximate. We determined that the coalescence of water drops resulted in the breaking of crude oil emulsions from the micrograph.  相似文献   

5.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

6.
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds.  相似文献   

7.
Mass Spectrometry, being able to look at the mass of individual molecules in a mixture of homologues, is particularly suitable for the detection of a series of oligomers. However, mass spectra had not been exploited to estimate oligomers distributions, due to the diffuse notion that a lack of correlation existed between peak intensities and concentration of the oligomers in the mixture. The introduction of soft-ionization techniques has largely eliminated this problem. A novel method for the determination of the microstructure of copolymers is presented here. We have recently found that opportune decoding of the information contained in the mass spectral intensities leads to the determination of composition and microstructure in copolymers, and this represents a significant progress. Statistical modeling of the mass spectral intensities of copolymers has been used to derive information on the distribution of monomers along the copolymer chain, and an automated procedure to find the composition and the sequence of the copolymers analyzed has been developed. The statistical analysis of copolymers makes use of Bernoullian and Markovian models in order to characterize the microstructure of copolymer samples, and assuming a theoretical distribution and then fitting the calculated oligomer abundances with the experimental MS peak intensities, the copolymer composition can be determined. A method is also reported to obtain the copolymer conposition by direct analysis of the mass spectra. These theories have been applied to determine the composition and the microstructure of several copolymers whose mass spectra have been reported in the most recent literature.  相似文献   

8.
While direct laser desorption ionization of soluble polyaniline dried onto metal sample plates results in mass spectra that are similar to previously shown electrospray ionization data of similar samples, laser desorption of unsolubilized solid polyaniline results in major fragmentation of the phenyl rings. Solventless MALDI, a recently developed technique for insoluble or slightly soluble species, involves the use of only solid analyte and matrix during sample preparation. Solventless MALDI of solid polyaniline results in mass spectra that are similar to the direct laser desorption ionization spectra of the soluble oligomers with some larger molecular weight oligomers also being detected. Based on the matrix used, different series of polyaniline with dissimilar end groups are detected. The matrix also affects the percentages of benzenoid and quinoid units in the oligomers. Thus, solventless MALDI appears to be a promising new technique for the mass spectrometric analysis of low solubility, but industrially important, polyanilines.  相似文献   

9.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data is used to determine the polymer average molecular weights, repeat units, and end groups. The development of the vortex method of solvent-free sample preparation showed that remarkably short mixing times could prepare samples that yielded high quality MALDI mass spectra. In this paper, we use microscopy images and MALDI mass spectra to evaluate the mixing time required by the vortex method to produce mass spectra for low molecular mass polymer samples. Our results show that mixing times of as little as 10 s can generate homogeneous thin films that produce high quality mass spectra with S/N ∼ 100. In addition, ultrashort mixing times of only 2 s still produce samples with mostly smooth morphology and mass spectra with S/N ∼ 10.  相似文献   

10.
The results of copolymer characterization by coupling of chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques and subsequent calculation of copolymer composition using a novel software tool 'MassChrom2D' are presented. For high-resolution mass analysis copolymer samples were fractionated by means of liquid adsorption chromatography (LAC). These fractions were investigated off-line by MALDI-TOF MS. Various mono-n-butyl ethers of polyethylene oxide-polypropylene oxide copolymers (PEO-co-PPO) were investigated. As well as the copolymer composition presented in two-dimensional plots, the applied approach can give additional hints on specific structure-dependent separation conditions in chromatography.  相似文献   

11.
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.  相似文献   

12.
The identification, quantification and localisation of steroids in biological fluids and tissues are subjects of considerable importance. Not only do steroids have classical hormonal properties via binding to nuclear receptors, they can also elicit cellular responses via interactions with other proteins. For mass spectrometric analysis, neutral steroids are not readily ionised by either electrospray (ES) or matrix-assisted laser desorption/ionisation (MALDI). In this communication a derivatisation protocol is presented which allows for the rapid analysis of neutral oxosteroids by both ES and MALDI mass spectrometry. Neutral oxosteroids are derivatised to Girard P hydrazones. When analysed by tandem mass spectrometry the derivatised steroids fragment to give structurally informative spectra allowing subsequent steroid identification. The derivatisation method is simple, the reagents are commercially available, and reaction products are easily isolated from the reaction mixture. Analyte identification can be performed at the sub-pg level.  相似文献   

13.
This work describes a simple, versatile solid-phase peptide-synthesis (SPPS) method for preparing micelle-forming poly(ethylene oxide)-block-peptide block copolymers for drug delivery. To demonstrate its utility, this SPPS method was used to construct two series of micelle-forming block copolymers (one of constant core-composition and variable length; the other of constant core length and variable composition). The block copolymers were then used to study in detail the effect of size and composition on micellization. The various block copolymers were prepared by a combination of SPPS for the peptide block, followed by solution–phase conjugation of the peptide block with a proprionic acid derivative of poly(ethylene oxide) (PEO) to form the PEO-b-peptide block copolymer. The composition of each block component was characterized by mass spectrometry (MALDI and ES-MS). Block copolymer compositions were characterized by 1H NMR. All the block copolymers were found to form micelles as judged by transmission electron microscopy (TEM) and light scattering analysis. To demonstrate their potential as drug delivery systems, micelles prepared from one member of the PEO-b-peptide block copolymer series were physically loaded with the anticancer drug doxorubicin (DOX). Micelle static and dynamic stability were found to correlate strongly with micelle core length. In contrast, these same micellization properties appear to be a complex function of core composition, and no clear trends could be identified from among the set of compositionally varying, fixed length block copolymer micelles. We conclude that SPPS can be used to construct biocompatible block copolymers with well-defined core lengths and compositions, which in turn can be used to study and to tailor the behavior of block copolymer micelles.  相似文献   

14.
The 1:1 and 2:1 formulations of the free radical initiated copolymers of methyl methacrylate (MMA) and tri-n-butyltin methacrylate (TBTM), and the homopolymer, poly(TBTM), are characterized by 13C- and 119C-NMR structural analyses were performed on the tributyltin-free hydrolyzate, a copolymer of MMA and methacrcylic acid (MAA). Configurational sequencing at the triad level is performed using the α-methyl region of the 13C-NMR spectrum. The probability of isotactic (meso) dyad placement at 80°C in the homopolymer (0.19) is determined to be significantly less than the probabilities observed for the copolymers (0.23–0.24). Random compositional sequencing is established for the copolymers through a comparison of the carbonyl regions of the 13C-NMR spectra of the hydrolyzates with the carbonyl regions in published spectra of structurally characterized copolymers of MMA and MAA. The 119Sn chemical shift and the tin-carbon J coupling for the polymers are dependent on the solvent employed. This dependence is attributed to electron donor or acceptor interactions between the solvent and the strong Sn? O dipole. The tin-containing copolymers exhibit multiple 119Sn resonances, which appear related to compositional sequencing.  相似文献   

15.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The use of inorganic species as assisting materials in matrix-assisted laser desorption/ionization (MALDI) analysis is an alternative approach to avoid interfering matrix ions in the low-mass region of the mass spectra. Reports of the application of inorganic species as matrices in MALDI analysis of small molecules are, however, scarce. Nevertheless, titanium dioxide (TiO(2)) powder has been reported to be a promising matrix medium. In this study we further explore the use of TiO(2) as a matrix for the MALDI analysis of low molecular weight compounds. We present results showing that nanosized TiO(2) anatase and TiO(2) rutile perform better as MALDI matrices than a commercial TiO(2) anatase/rutile mixture. Moreover, when using nanosized TiO(2) anatase as a matrix, high-quality mass spectra can be obtained with strong analyte signals and weak or non-existing matrix interference ions. Furthermore, our results show that the phase type plays an important role in the application of TiO(2) as a MALDI matrix.  相似文献   

17.
The structural analysis of small drug molecules by directly coupling thin-layer chromatography (TLC) with postsource-decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is reported. The applicability of this technique is shown using two examples: the TLC-PSD MALDI analysis of two representatives of nonsteroidal antiinflammatory drugs (tenoxicam and piroxicam) and the analysis of the pharmaceutically active compound UK-137,457 and one of its related substances UK-124,912. The matrices alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA) and graphite are used to investigate the effect of the precursor ion selection on the TLC-PSD MALDI spectra of the drug molecules studied. Although alpha-CHCA enhances the [M+H]+ ion formation graphite produces in general only sodium adducts. Structural differentiation of tenoxicam and piroxicam is possible only by selecting the sodium adduct of both drug molecules as precursor ions. In the case of the TLC-PSD MALDI analysis of UK-137,457 and its related substance UK-124,912 at the 1% level, the PSD spectra obtained in alpha-CHCA by selecting the protonated adduct of the small molecules as precursor ions shows distinguishable dissociation patterns containing structurally significant information.  相似文献   

18.
Formation of a stereocomplex from polylactide copolymers can be tuned by changing the size and the chain topology of the second block in the copolymer. In particular, the use of a dendritic instead of linear architecture is expected to destabilize the cocrystallisation of polylactide blocks. With this idea in mind, dendritic‐linear block copolymers were synthesized by ring‐opening polymerization (ROP) of lactides using benzyl alcohol dendrons of generation 1–3 as macroinitiators and stannous octoate as catalyst. Polymers with controlled and narrow molar mass distribution were obtained. The MALDI‐TOF mass spectra of these dendritic‐linear block copolymers show well‐resolved signals. Remarkably, 10% or less of odd‐membered polymers are present, indicating that ester‐exchange reactions which occur classically parallel to the polymerization process, were in these conditions, very limited. Thermal analysis of polyenantiomers of generation 1–3 and the corresponding blends were examined. The blend of a pair of enantiomeric dendritic‐linear block copolymers exhibit a higher melting temperature than each copolymer, characteristic for the formation of a stereocomplex. Melting temperatures are strongly dependent on the dendron generation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6782–6789, 2006  相似文献   

19.
Several members of Enterobacteriaceas were analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (TOFMS). Characteristic mass spectral peaks and patterns were observed in the mass range of 2 to 20 kDa. The mass peaks reported to be reproducibly observed by previous researchers, which were claimed to serve as species/strain-specific biomarkers, are consistently observed in our current study. Despite the high degree of similarity found in the MALDI mass spectra within the enteric bacteria, minor yet notable differences existed to allow their differentiation. Five spectral peaks at m/z 4364, 5380, 6384, 6856, and 9540, generated reproducibly for each genus studied here, are assigned as family-specific biomarkers for the Family Enterobacteriaceae. The mass peaks at m/z 7324, 7724, 9136, and 9253 are assigned as genus-specific biomarkers for Salmonella. Some unique biomarkers characterizing the species and strains of E. coli are also presented.  相似文献   

20.
A new solvent-free sample preparation method using silver trifluoroacetate (AgTFA) was developed for the analysis of low molecular weight paraffins and microcrystalline waxes by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOFMS). Experiments show that spectral quality can be enhanced by dispersing AgTFA directly in liquid paraffins without the use of additional solvents. This preparation mixture is applied directly to the MALDI probe. Solid waxes could be examined by melting prior to analysis. The method also provides sufficiently reproducible spectra that peak area ratios between mono- and bicyclic alkane peaks indicated variations in the cycloalkane content of paraffin samples. Dehydrogenation of hydrocarbons observed during the desorption/ionization process was studied by analysis of alkane standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号