首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecularly imprinted polymers (MIPs) are tailor-made polymers with high selectivity for the template molecule. This selectivity arises from the synthetic procedure followed to prepare the MIP. In this work, the influence of process parameters on the preparation of vinblastine (VLB) imprinted polymers was presented. In the procedure of polymerization, VLB (0.1 mmol) was used as the template molecule and a commonly used initiator, azobisisobutyronitrile (AIBN), was employed to initiate the reaction at 60 °C. The influence of the following parameters was investigated: the moles of functional monomer (MAA, 0.3-1.0 mmol), the moles of cross-linker (EDMA, 1.5-5.0 mmol) and the porogenic solvent (toluene or acetonitrile). A mathematical method of uniform design was applied to optimize these selected parameters in order to increase the selectivity of MIP for template molecule. The experimental data were analyzed to obtain the regression model and the optimal conditions were achieved by optimization with uniform design software. The MIP was synthesized under the optimal conditions that 1.0 mmol of MAA and 5.0 mmol of EDMA copolymerized in toluene in the presence of 0.1 mmol of VLB. After removal of the template molecule, the obtained MIP was then employed as the sorbents of solid-phase extraction (SPE) to separate VLB from Catharanthus roseus extract. The results showed that the polymer exhibited high affinity to the template molecule and could separate and enrich VLB from C. roseus extract effectively. The recovery of VLB on the optimal MIP was 89.00%, which agreed closely with the predicted recovery. Therefore it is possible to further improve the nature of the polymer by optimizing the polymerization parameters with the method of uniform design.  相似文献   

2.
Conventional molecular imprinting technology allows the synthesis in organic solvents of molecularly imprinted polymers (MIPs) selective toward relatively low molecular weight compounds. However, synthesis in aqueous media of chemically and mechanically stable MIPs that can recognize biomolecules such as peptides and proteins still is a great challenge. In this article, we report the successful synthesis of peptide-selective MIPs in aqueous solution. HPLC evaluation of these polymers with a water-based mobile phase showed their selectivity for the peptide, [Sar1,Ala8]angiotensin II (SA), that had been used as the template, but not for its parent peptide angiotensin II (AII). The binding capacity and selectivity of our MIPs depended on the ratio of template to functional monomer in the polymerization mixture, as well as on the ionic strength and pH of the chromatographic mobile phase. These MIPs can be used for chromatographic detection of the octapeptide [Sar1,Ala8]angiotensin II in aqueous solution, with a detection limit of 8 pmol and a response that is linear (r2>0.99) over the concentration range 0.4-20 μM.  相似文献   

3.
Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent.  相似文献   

4.
Highly selective molecularly imprinted polymers (MIPs) for solid-phase extraction and determination of furosemide in human plasma have been designed and prepared. In order to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation, a computational approach was developed. It was based on the comparison of the binding energy of the complexes between the template and functional monomers. Having confirmed the results of computational method, three MIPs were synthesized with different functional monomers, i.e. acrylamide (AAM), 4-vinylpiridine (4-VP) and acrylonitrile (ACN), and then evaluated using Langmuir-Freundlich (LF) isotherm. Using the MIP prepared by AAM as functional monomer, a molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC-UV) was developed for selective extraction and determination of furosemide in human plasma. For the proposed MISPE-HPLC-UV method, the linearity between responses (peak area) and concentration was found over the range of 75-3500 ng mL−1 with a linear regression coefficient (R2) of 0.997. The limit of detection (LOD) and quantification (LOQ) in plasma were 12.9 and 43.3 ng mL−1, respectively.  相似文献   

5.
《中国化学会会志》2017,64(4):434-439
In this article, we provide a theoretical discussion on the interactions between a template molecule and functional monomer(s) in the preparation of molecularly imprinted polymers (MIPs ). Density functional theory (DFT ) was used to compute the 3D structures, natural bond orbital, and binding energy in the template–monomer(s) complexes. Histamine (HA ) and 2‐(trifluoromethyl)acrylic acid (TFMAA ) were, respectively, selected as the template and the monomer. The computational process was performed according to B3LYP method with 6‐311 + (d,p) basis set under the different HA–TFMAA ratios from 1:1 to 1:10. The computational results show that the HA–TFMAA complex at the ratio of 1:5 yields no consequence. Furthermore, the HA–TFMAA complex at the ratio of 1:5 allowed the minimum binding energy and the steadiest condition, with four hydrogen bonds. Configurational simulations and theoretical calculations of the template–monomer complex can be used as an appropriate guiding tool for manufacturing MIPs with high specificity and selectivity, thereby avoiding repeated experiments and wastage of substantial time and investment.  相似文献   

6.
Multi‐template molecular imprinting technique was employed for the theoretical study about industrial oil denitrification. Prior to the preparation of multi‐template molecularly imprinted polymers (MT‐MIPs), density functional theory was used for simulating the imprinted pre‐assembly systems composed of template (aniline, indole, or 3‐methylinndole) and monomer [methacrylic acid, acrylamide (AM), and 4‐vinylpyridine]. MT‐MIPs were synthesized as surface MIPs simply and successively by seeded emulsion polymerization or two‐stage precipitation polymerization. The experimental results were consistent with the simulative results, which demonstrated that AM was more suitable monomer together. In addition, seeded emulsion polymerization synthesized MT‐MIPs with better performance compared with two‐stage precipitation polymerization. The adsorption kinetics and adsorption isotherm of MT‐MIP prepared with AM using seeded emulsion polymerization were fitted with different models. The fitting results indicated that pseudo‐second‐order kinetics model and Freundlich isotherm model were suitable for describing the adsorption process of AM seeded emulsion polymerization. This study will provide a certain guidance and theoretical basis for introducing the combination of multi‐template molecular imprinting technique and computational simulation into the field of industrial denitrification. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The work herein reports on an approach to obtain molecularly imprinted polymers (MIPs) for Atmer 129, an antistatic added to polyolefins and a previously non imprinted template with intra molecular H-bonding capability. The template–monomer interactions occurring in pre- and post-polymerization media were analyzed by FTIR and ATR-FTIR, respectively. After the prepolymerization study, the synthesis conditions were discussed and suitable porogens and potential template:monomer stoichiometries were suggested. The imprinting efficiency and selectivity of MIPs were evaluated in batch assays by HPLC or UPLC and compared with thermal behavior and morphological characteristics checked by Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). The best results were obtained for MIPs synthesized at 60 °C. A relation between imprinting effect and template shape recognition was suggested by selectivity studies. The major conclusion, which has been drawn from FTIR and DSC studies, is that independently of the H-bonding strength between Atmer 129 and monomer, the template started to crystallize out during the polymerization reaction, thus reducing the imprinting effect.  相似文献   

8.
Kim H  Spivak DA 《Organic letters》2003,5(19):3415-3418
[structure: see text] An "orthogonal" approach to molecularly imprinted polymers has been demonstrated using a crown ether derived monomer that does not exhibit cross-reactivity with other functional monomers. This strategy provides multiple functional groups in the binding site of molecularly imprinted polymers (MIPs) without unproductive interactions between functional monomers. The orthogonal functional group system was shown to act cooperatively in MIPs to bind a template with higher selectivity than any of the individual functional monomers alone.  相似文献   

9.
The effect of the size of the molecularly imprinted polymers (MIPs) on the piezoelectric quartz crystal (PQC) sensor performance was investigated. Erythromycin imprinted polymers microspheres with different sizes were synthesized by precipitation polymerization. The size of the MIPs was characterized by using transmission electron microscope (TEM) analysis. Being coated with a poly(vinyl chloride) (PVC) membrane containing MIPs, the proposed PQC sensor can selectively adsorb the template molecule. Investigation of the performance of sensors modified with different sizes of MIPs showed that PQC sensor modified with smaller size MIPs exhibited better performance and excellent selectivity. Other influencing factors on sensor functions modified with different sizes MIPs were also investigated.  相似文献   

10.
New synthetic strategies for molecularly imprinted polymers (MIPs) were developed to mimic the flexibility and mobility exhibited by receptor/enzyme binding pockets. The MIPs were prepared by bulk polymerization with quercetin as template molecule, acrylamide as functional monomer, ethylene glycol dimethacrylate as cross‐linker, and THF as porogen. The innovative grafting of specific oligoethylene glycol units onto the imprinted cavities allowed MIPs to be obtained that exhibit extended selectivity towards template analogues. This synthetic strategy gives promising perspectives for the design of molecular recognition of molecules based on a congruent pharmacophore, which should be of interest for drug development.  相似文献   

11.
Molecularly imprinted polymers (MIPs) selective for lysozyme were prepared on SPR sensor chips by radical co-polymerization with acrylic acid and N,N′-methylenebisacrylamide. Gold-coated SPR sensor chips were modified with N,N′-bis(acryloyl)cystamine, on which MIP thin films were covalently conjugated. The presence of NaCl during the polymerization and the re-binding tests affected the selectivity and the optimization of NaCl concentration in the pre-polymerization mixture and the re-binding buffer could enhance the selectivity in the target protein sensing. When the lysozyme-imprinted polymer thin films were prepared in the presence of 40 mM NaCl, the selectivity factor (target protein bound/reference protein bound) of MIP in the re-binding buffer containing 20 mM NaCl was 9.8, meanwhile, that of MIP in the re-binding buffer without NaCl was 1.2. A combination of SPR sensing technology with protein-imprinted thin films is a promising tool for the construction of selective protein sensors.  相似文献   

12.
Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template’s structural analogues, caffeic acid, caftaric acid and chlorogenic acid.  相似文献   

13.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

14.
This study aimed at elucidating the chiral recognition mechanism with molecularly imprinted polymers (MIPs) in aqueous environment. The system used ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), and 4-l-phenylalanylamino-pyridine (4-l-PheNHPy) as the cross-linking monomer, functional monomer and template, respectively, to assemble the imprinted polymer. A self-assembly mechanism, which includes the pre-organizing functional monomers around template before polymerization process, was proposed. This mechanism was supported by NMR titration test. Interactions between functional monomer and template were observed using UV-Vis spectroscopy of solutions of these components as well. These studies indicated a 1:2 molecular complex dominantly formed between 4-l-PheNHPy and MAA. Association constant was estimated to be 97,000 M−2. Based on these results, a model mainly involving two-spot interaction was proposed evolving from our reported concept of exact placement of functional group. Ionic interaction between the primary amino group of 4-l-PheNHPy and carboxylic acid group inside the microcavity on MIPs was believed to play a predominate role in the enantioselectivity as supported by the observation of the relationship between the retention factor of 4-l-PheNHPy and the pH of mobile phase. While thermodynamic study at different pH revealed that, the interaction between the pyridyl group of 4-l-PheNHPy and the carboxylic acid group on the MIPs is also strong, implying that it also plays a profound role in determining the highly chiral selectivity of MIPs.  相似文献   

15.
酚酞分子印迹聚合物的制备及特异吸附性能   总被引:1,自引:0,他引:1  
石慧丽  樊静  魏娅方 《应用化学》2009,26(8):971-975
以泻药酚酞为模板分子,4-乙烯基吡啶为功能单体制备了模板分子和功能单体不同比例的一系列酚酞分子印迹聚合物。利用扫描电镜对聚合物进行了表面形态分析,采用静态平衡实验法研究了聚合物对模板分子及其类似物的吸附行为和选择性识别能力。实验结果表明,所制备的分子印迹聚合物,吸附 3 h 后基本接近最大吸附量,其中模板分子、4-乙烯基吡啶和交联剂的摩尔比为 1∶6∶20的MIP2的印迹因子为 2.30,效果最佳。Scatchard 分析表明, 在所研究的浓度范围内,吸附过程存在两类结合位点,一类高亲和力结合位点的离解常数为Kd1= 0.63 mmol/L,最大表观结合量 Qmax1 = 25.4 umol/g,另一类低亲和力结合位点的离解常数为 Kd2 =3.5 mmol/L,最大表观结合量 Qmax2 = 61.9 umol/g,通过与酚酞类似物质在酚酞分子印迹聚合物上的吸附行为比较,表明对酚酞具有很好的选择性吸附。  相似文献   

16.
Molecularly imprinted polymers (MIPs) were prepared for adenosine-5′-monophosphate (AMP), a substrate of AMP-activated protein kinase. The template molecule was formed by the vinylphenylboronate diester of adenosine on which 5′-free hydroxide was protected by tert-butyldimethylsilyl group in order to mimic the steric hindrance of the phosphate moiety of AMP. Molecular imprinting was performed by complexing acrylamide and the template in a highly cross-linked polymer. MIPs were tested in batch experiments with aqueous samples of nucleotides and a number of parameters were investigated. The use of tetrabutylammonium hydroxide (TBAH) was necessary to obtain a rebinding of nucleotides on MIP. The adsorption of AMP was optimal in 5 mM ammonium acetate buffer solution pH 9.5 for 30 min, with 30 mM of TBAH. The imprinted polymer was selective for AMP towards others nucleotides or deoxi analogues.  相似文献   

17.
Molecular imprinting made easy   总被引:4,自引:0,他引:4  
A simple method of molecular imprinting is presented that uses a single cross-linking monomer N,O-bismethacryloyl ethanolamine (NOBE) along with template, initiator, and solvent. This formulation eliminates the need for additional functional monomers and empirical optimization of relative ratios of functional monomers, cross-linkers, and template. In fact, utilization of NOBE alone often provides molecularly imprinted polymers (MIPs) with higher performance than MIPs incorporating functional monomer (e.g., methacrylic acid).  相似文献   

18.
The existence of shape selectivity in non-covalent molecularly imprinted polymers (MIPs) has been proven using molecular probes. Twelve secondary amines with different sized side chains were imprinted, and enantioselectivity evaluated by HPLC for each amine on each imprinted polymer. Trends in the quantitative structure-binding relationships (QSBR) revealed two major contributions of cavity structure on selectivity afforded by molecularly imprinted polymers. First, sterics play a dominant role in cases where a molecules structure is too big too fit into an imprinted site formed from a smaller template molecule; e.g. on MIPs made with small templates, large analytes give separation factors (α) close to 1.0 (no selectivity), while small analytes give α values of 1.4. Second, molecular structures that are equal to or smaller than those of the template molecule are selected by maximizing Van der Waals interactions within the MIP binding site. Thus, MIPs made with large analytes give α values up to 2.5, while small analytes on the same MIPs give α values closer to 1.1. Template structure also has an effect on MIP enantioselectivity; e.g. branched structures exhibit a 1.7-fold improvement in separation factors (α) by MIPs made for isopropyl versus propyl derivatives, and cyclohexyl versus hexyl derivatives. Full details of these trends are provided in the text.  相似文献   

19.
以泰乐菌素为虚拟模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,合成了对替米考星具有高选择性的分子印迹聚合物。考察了二甲基甲酰胺、甲醇、丙酮和氯仿4种致孔剂对合成聚合物性能的影响。通过正交实验优化的聚合配方为:1.0mmol泰乐菌素,8.0mmol甲基丙烯酸,20.0mmol乙二醇二甲基丙烯酸酯,6.0mL氯仿,20.0mg偶氮二异丁腈。研究了将该聚合物作为固相萃取填料分离、富集替米考星的萃取条件和萃取性能。当萃取柱依次用甲醇和水(pH9.0)活化,乙腈溶液上样,甲醇和氯仿分别洗涤,3mL氨化甲醇(95:5,V/V)洗脱时,替米考星在分子印迹固相萃取柱上的回收率达到90%以上,而非分子印迹固相萃取柱的回收率仅为32%。  相似文献   

20.
Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ max of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号