首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MnTiO3 ceramics were prepared via the traditional solid-state reaction route. The low-temperature (100–330 K) dielectric properties of MnTiO3 have been systematically investigated in the frequency range from 100 Hz to 5 MHz. Our results showed that MnTiO3 exhibits intrinsic dilectric response in a wide temperature range up to 200 K. A relaxation appears near room temperature. This relaxation can be enhanced by annealing treatment in oxygen and weakened in nitrogen. Reducing the sample thickness gradually leads to the disappearance of the relaxation. Based on these experimental facts, the relaxation was ascribed to be a Maxwell–Wagner relaxation due to surface-layer effect.  相似文献   

2.
Temperature and frequency dependence of dielectric constant (ε′) and dielectric loss (ε″) are studied in glassy Se70Te30 and Se70Te28Zn2. The measurements have been made in the frequency range (8-500 kHz) and in the temperature range 300 to 350 K. An analysis of the dielectric loss data shows that the Guintini's theory of dielectric dispersion based on two-electron hopping over a potential barrier is applicable in the present case.No dielectric loss peak is observed in glassy Se70Te30. However, such loss peaks exist in the glassy Se70Te28Zn2 in the above frequency and temperature range. The Cole-Cole diagrams have been used to determine some parameters such as the distribution parameter (α), the macroscopic relaxation time (τ0), the molecular relaxation time (τ) and the Gibb's free energy for relaxation (ΔF).  相似文献   

3.
The synthesis and crystal structure of the bis (3-dimethylammonium-1-propyne) pentabromobismuthate(III) salt are given in the present paper. After an X-ray investigation, it has been shown that the title compound crystallizes at 298 K in a centrosymmetric monoclinic system, in the space group C2/c with the following lattice parameters a=12.9034(3) Å, b=19.4505(6) Å, c=8.5188(2) Å, β=102.449(2). Not only were the impedance spectroscopy measurements of (C5H10N)2BiBr5 carried out from 209 Hz to 5 MHz over the temperature range of 318 K–373 K, but also its ac conductivity evaluated. Besides, the dielectric relaxation was examined using the modulus formalism. Actually, the near values of activation energies obtained from the impedance and modulus spectra confirms that the transport is of an ion hopping mechanism, dominated by the motion of the H+ ions in the structure of the investigated material.  相似文献   

4.
A polycrystalline rare earth double perovskite oxide, strontium cerium niobate, Sr2CeNbO6 (SCN) is synthesized by solid state reaction technique for the first time. Impedance spectroscopy is employed to determine the electrical parameters (resistance (R), capacitance (C) and relaxation time (τ)) of SCN in a temperature range from 303 to 703 K and in a frequency range from 100 Hz to 1 MHz. The spectrum of imaginary part of complex impedance (Z″) at each temperature exhibits one relaxation peak. The modified Cole-Cole equation is used (experimental data is fitted with this model) to describe these relaxation peaks. Scaling behaviour of Z″ suggests that the relaxation describes the same mechanism at the entire temperature range. Impedance data of SCN that have capacitive and resistive components is represented by Nyquist diagram. The experimental impedance data is fitted using equivalent RC circuit at various temperatures. The grain conduction and τ follow an Arrhenius law associated with activation energy 0.87 and 0.88 eV, respectively.  相似文献   

5.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

6.
A single phase rare earth double perovskite oxide Ba2CeNbO6 (BCN) is synthesized by solid-state reaction technique for the first time. The X-ray diffraction pattern of the sample at room temperature shows monoclinic structure, with the lattice parameters, a=5.9763 Å, b=5.975 Å and c=8.48 Å and β=90.04°. Impedance spectroscopy is used to study the ac electrical behavior of this material as a function of frequency (102-106 Hz) at various temperatures (30-450 °C). A relaxation is observed in the entire temperature range. Conduction mechanism is investigated by fitting the complex impedance data to Cole-Cole equation. Complex impedance plane plots show only one semicircular arc, indicating only the grain contribution of dielectric relaxation. The scaling behavior of imaginary part of electric modulus (M″) and imaginary part of electrical impedance (Z″) suggests that the relaxation describes the same mechanism at various temperatures. The frequency dependence of conductivity is interpreted in terms of the jump relaxation model and is fitted to Jonscher's power law. The values of dc conductivities extracted from the Jonscher power law varies from 2.79×10−7 to 3.5×10−5 Sm−1 with the increase in temperature from 100 to 450 °C. The activation energies (0.37 eV) extracted from M″(ω) and Z″(ω) peaks are found to follow the Arrhenius law.  相似文献   

7.
The complex dielectric spectra of dipropylsulfoxide (DPSO)/water mixtures in the whole concentration range have been measured as a function of frequency between 100 MHz and 20 GHz at four temperatures between 298.15 K and 328.15 K. The dielectric parameters, static dielectric constant (εs), relaxation time (τ) and relaxation strength (Δε) have been obtained by the least squares fit method. The relaxation in these mixtures can be described by two Debye functions, whereas for pure DPSO Cole-Davidson type is valid. The relaxation times of the mixtures show a maximum at about x(DPSO) ≈ 0.3. In the concentration range where a maximum appears, the interaction of DPSO with water is presumably the result of hydrogen bonding between water and the sulfonyl group of the sulfoxide molecule. The concentration and temperature dependent excess dielectric constant and effective Kirkwood correlation factor of the binary mixtures have been determined. The excess permittivity is found to be negative for all concentrations.  相似文献   

8.
This study provides the first direct experimental measurements of the off-diagonal relaxation matrix element coefficients for line mixing in air-broadened methane spectra for any vibrational band and the first off diagonal relaxation matrix elements associated with line mixing for pure methane in the ν2 + ν3 band of 12CH4. The speed-dependent Voigt profile with line mixing is used with a multispectrum nonlinear least squares curve fitting technique to retrieve the various line parameters from 11 self-broadened and 10 air-broadened spectra simultaneously. The room temperature spectra analyzed in this work are recorded at 0.011 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory, Kitt Peak, Arizona. The off-diagonal relaxation matrix element coefficients of ν2 + ν3 transitions between 4410 and 4629 cm−1 are reported for eighteen pairs with upper state J values between 2 and 11. The observed line mixing coefficients for self broadening vary from 0.0019 to 0.0390 cm−1 atm−1 at 296 K. The measured line mixing coefficients for air broadening vary from 0.0005 to 0.0205 cm−1 atm−1 at 296 K.  相似文献   

9.
(La0.6Eu0.4)0.67Ca0.33MnO3 has been prepared in the shape of nanoplates of single crystallites (an orthorhombic structure) through polymer templates. HRTEM images reveal 18, 25, and 30 nm thicknesses of plates after heating a precursor powder at 873, 1073, and 1273 K in air for 2 h. These values present average crystallite size determined from broadening of the X-ray diffraction peaks. A spin-glass-like surface (GS) overlayer (3-5 nm thickness) in such plates facilitates a ferromagnetic→ferrimagnetic reordering with markedly suppressed Curie point TC, i.e., as small as 90 K in a 873 K heated sample, from the parent value 268 K. The TC point increases to 103 K (or 120 K) when heating at higher temperature 1073 (or 1273 K), during which the core grows at the expense of the overlayer. The GS tailors as high coercivity Hc as 617 Oe in the zero field cooled (ZFC) sample that is decreased to 500 Oe in the field cooled (FC) sample in the surface spin-freezing along the field direction. The Hc-value (ZFC) that steps down successively to 252 Oe on the overlayer is thinned down by heating at 1273 K. Samples heated at 873, 1073, or 1273 K have regularly increased saturation magnetization 35.3, 63.9, or 69.6 emu/g in ZFC, while 43.7, 70.2, or 75.5 emu/g in FC measured at 10 K. The ferrimagnetic reordering are described based on the scenario of an antiferromagnetic exchange coupling between the Eu3+ and Mn3+ (or Mn4+) sublattices.  相似文献   

10.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

11.
Possible local structures of K ions in the tunnel of a hollandite superstructure KxMg(8 + x)/3Sb(16 − x)/3O16 (x ≈ 1.76) were presented, and the validity of the models was confirmed by the structure refinement using single-crystal X-ray diffraction data. Additional constraint conditions were introduced in refinements so that the average structure obtained from the refinement is consistent with assumed microscopic pictures. Joint-probability density functions were calculated for specific K ions concerning the hopping process between neighboring cavities, and converted to the one-particle potentials. Three types of the energy barrier for the hopping process were seen, which were uniformly reduced applying the anharmonic atomic displacement parameters.  相似文献   

12.
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.  相似文献   

13.
Double perovskite oxide holmium zinc zirconate Ho2ZnZrO6 (HZZ) is synthesized by solid state reaction technique under a calcination temperature of 1100 °C. The crystal structure has been determined by powder X-ray diffraction, which shows monoclinic phase at room temperature. The variation of dielectric constant (ε′) and loss tangent (tan δ) with frequency is carried out assuming a distribution of relaxation times. The frequency corresponding to loss tangent peak is found to obey an Arrhenius law with activation energy of 89.7 meV. The frequency-dependant electrical data are analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary electric modulus shows the temperature-independent nature of the distribution of relaxation times. Nyquist plots are drawn to identify an equivalent circuit and to know the bulk and interface contributions.  相似文献   

14.
Depopulation rates of rotational levels in the v3 = 2 vibrational state of 12CH4 are investigated by a pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2ν3 lines. The time evolution in population of the excited level after the pumping pulse is monitored by tuning the probe laser to a (3ν3 ← 2ν3) line corresponding to a transition with the excited rotational level as the lower level. Measurements were performed from room temperature down to 100 K in pure CH4 and in CH4-N2 mixtures. The rotational relaxation rate coefficients are given for the J = 1, A2, J = 1, E, J = 1, F2 and J = 0, F2 levels. The results are compared with the available data on line broadening coefficients. The temperature dependence of the data on N2-broadening is particularly well reproduced by the power law deduced from the results on rotational relaxation.  相似文献   

15.
In this work we report the temperature dependence of the resistivity ρ of p-Cu2GeSe3 and manganese-doped p-Cu2GeSe3 at low temperature. It was found that for a intrinsic sample ρ obeys the Shklovskii-Efros-type variable-range hopping resistivity law in the temperature range from 4 to 63 K. This behaviour is governed by generation of a Coulomb gap Δ=78 meV in the density of localized states. We find a low activation term T0=0.24 K, which is an indication of a large localization length ξ. For Mn-doped sample a metal-insulator transition (MIT) is observed at T=65 K. On the basis of the Mott criterion for metal-insulator transition, the critical carrier density nc is determined. From the analysis of resistivity data it is concluded that Mn acts as acceptor impurity.  相似文献   

16.
CoxNi1−x/Cu3Au(1 0 0) with x ? 11% was prepared at room temperature to study the strain relaxation and their correlation with the spin-reorientation transition. The vertical interlayer distance relaxed from 1.66 Å (fct) to 1.76 Å (fcc) while the thickness increased from 8 ML to 18 ML. Such rapid strain relaxation with thickness was attributed to the larger lattice mismatch between CoxNi1−x and Cu3Au(1 0 0) (η ∼ −6.5%). The smooth change for crystalline structure was observed during strain relaxation process in which the crystalline structure seems irrespective of the alloy composition. To explain the strain relaxation, a phenomenological model was proposed. We provide a physical picture that the deeper layers may not relax while the surface layer start to relax. This assumption is based on the several experimental studies. Using the strain averaged from all layers of thin film as the volume strain of magneto-elastic anisotropy energy, the interrelation between strain relaxation and spin reorientation transition can be well described in a Néel type magneto-elastic model.  相似文献   

17.
The complex perovskite oxide In(Mg1/2Ti1/2)O3 (IMT) is synthesized by a solid state reaction technique. The X-ray diffraction of the sample at 30 °C shows a monoclinic phase. The dielectric properties of the sample are investigated in the temperature range from 143 to 373 K and in the frequency range from 580 Hz to 1 MHz using impedance spectroscopy. An analysis of the dielectric constant ε′ and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The Cole-Cole model is used to explain the relaxation mechanism in IMT. The scaling behavior of imaginary part of electric modulus (M″) shows that the relaxation describes the same mechanism at various temperatures. The electronic structure and hence the ground state properties of IMT is studied by X-ray photoemission spectroscopy (XPS). The valence band XPS spectrum is compared with the electronic structure calculation. The electronic structure calculation indicates that the In-5s orbital introduces a significant density of states at the Fermi level, which is responsible for a high value of conductivity in IMT.  相似文献   

18.
19.
The magnetic dynamics of charge ordered Nd0.8Na0.2MnO3 compound was studied by measuring the temperature variation of magnetization for different magnetic fields up to 7 T and, the field variation of magnetization at different temperatures down to 5 K. This sample exhibits a charge-ordering transition at 180 K, followed by a weak ferromagnetic (FM) transition at around 100 K and a spin glass like transition below 40 K. Suppression of charge-ordering and spin glass like transition and increase in FM TC were observed with an increase in magnetic field. A reversible metamagnetic transition above a threshold field (Hf) of 4.5 T was observed at 130 K, followed by a saturation magnetization of 3.2 μB/f.u. However at 5 K, an irreversible field induced first order phase transition from charge ordered state to FM state was observed at Hf=5 T. For comparison, the temperature and field variations of magnetization were studied on a FM compound from the same series with the composition Nd0.90Na0.10MnO3. A clear FM transition with a TC of 113 K and a saturation magnetization of 4.3 μB/f.u was observed.  相似文献   

20.
Magnetoresistance material Sr2FeMoO6 with double perovskite structure was synthesized by microwave sintering method using SrCO3, Fe2O3 and MoO3 as raw materials, with MnO2 for microwave absorber. The phase structure, magnetic and electrical transport properties were investigated by X-ray powder diffraction (XRD) and vibrating-sample magnetometer. XRD analysis shows that the as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group. The unit cell parameters are a=0.5587 nm, c=0.7894 nm, volume=0.2464 nm3. The calculated grain size of the sample is 31.62 nm, which is obtained by the Scherrer formula using the diffraction data. Magnetism testing results show that the sample Sr2FeMoO6 is ferromagnetic with the magnetic transition temperature of about 380 K. Under 1.0 T magnetic field, the saturation and spontaneous magnetization of Sr2FeMoO6 is 1.25 μB/f.u. and 1.00 μB/f.u. at room temperature. The magnetoresistance ratio of the sample is 28%. Electrical transport properties testing results indicate that the sample exhibits typical semiconductor behavior. The conductive mechanism of Sr2FeMoO6 is highly dependent on temperature: within the temperature range of 100–300 K, the mechanism is attributed to the small polaron variable-range hopping model; while it is ascribed to the adiabatic small polaron model within the temperature range of 80–100 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号