首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
In this work, we report the optical properties of bulk Se93−XZn2Te5InX (X=0, 2, 4, 6 and 10) chalcogenide glasses. Refractive index, extinction coefficient, real dielectric constant (ε′), imaginary dielectric constant (ε″), absorption coefficient (α) and energy band gap were obtained from analysis of common range (250-1100 nm) UV/Visible transmittance spectrum. Besides, transmission percentages were obtained from FTIR spectra in wave number range 4000-400 cm−1.The concentration dependence structural phenomena have been explained with help of average coordination 〈z〉.  相似文献   

2.
Se85Te10Bi5 films of different thicknesses ranging from 126 to 512 nm have been prepared. Energy-dispersive X-ray (EDX) spectroscopy technique showed that films are nearly stoichiometric. X-ray diffraction (XRD) measurements have showed that the Se85Te10Bi5 films were amorphous. Electrical conduction activation energy (ΔEσ) for the obtained films is found to be 0.662 eV independent of thickness in the investigated range. Investigation of the current voltage (I-V) characteristics in amorphous Se85Te10Bi5 films reveals that it is typical for a memory switch. The switching voltage Vth increases with the increase of the thickness and decreases exponentially with temperature in the range from 298 to 383 K. The switching voltage activation energy (ε) calculated from the temperature dependence of Vth is found to be 0.325 eV. The switching phenomenon in amorphous Se85Te10Bi5 films is explained according to an electrothermal model for the switching process. The optical constants, the refractive index (n) and the absorption index (k) have been determined from transmittance (T) and reflectance (R) of Se85Te10Bi5 films. Allowed non-direct transitions with an optical energy gap (Egopt) of 1.33 eV have been obtained. ΔEσ is almost half the obtained value of Egopt, which suggested band to band conduction as indicated by Davis and Mott.  相似文献   

3.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

4.
The effect of additives (Sb and Ag) on a.c. conductivity and dielectric properties of Se70Te30 glassy alloy at temperature range 300-350 K and frequency range 1 kHz-5 MHz has been studied. Experimental results indicate that a.c. conductivity and dielectric parameters depend on temperature, frequency and the impurity incorporated in Se-Te glassy system. The a.c. conductivity in the aforesaid frequency range is found to obey the ωs law. A strong dependence of a.c. conductivity and exponent s in the entire temperature and frequency range contradicts quantum-mechanical tunneling (QMT) model and can be interpreted in terms of the correlated barrier hopping (CBH) model. The temperature and frequency dependence of the dielectric parameters are also studied and it is found that the results agrees by the theory of hopping of charge carriers over potential barrier as suggested by Elliott in chalcogenide glasses. The change in the dielectric parameters with the opposite influence of the replacement of Te by Sb on the one hand, and by Ag, on the other hand is being correlated by the nature of covalent character of the studied composition and with the change in density of defect states.  相似文献   

5.
The dielectric relaxation spectroscopes of CdxSe70−xTe30 (where x = 0, 5, 7, 10) alloy have been investigated in the temperature range 298-373 K and in the frequency range 100 Hz to 100 kHz near the percolation threshold. The frequency and temperature dependence on the dielectric constant showed a Debye dielectric relaxation process. Using Debye relation, the dielectric constant (?′), the most probable relaxation time (τ) and the barrier height (W) were estimated for binary ternary chalcogenide systems.In addition, the analysis of the results suggests that the effect of Cd content on electronic conduction of the system. The experimental results support to some extent the above criterion in the case of Cd-Se-Te ternary alloy.  相似文献   

6.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

7.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

8.
Chalcogenide glasses from the As2Se3-As2Te3-Sb2Te3 system were synthesized for the first time. The glass-forming region was determined by X-ray diffraction and electron microscopic analyses.The basic physicochemical parameters such as density (d), microhardness (HV) and temperatures of phase transformations (glass transition Tg, crystallization Tcr and melting Tm) were measured. Compactness and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network as well as the elasticity module (E) were calculated. The glass-forming ability was evaluated according to Hruby's criteria (KG). The correlation between composition and properties of the (As2Se3)x(As2Te3)y(Sb2Te3)z glasses was established and comprehensively discussed.  相似文献   

9.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

10.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

11.
The complex perovskite oxide a barium samarium niobate (BSN) synthesized by solid-state reaction technique has single phase with cubic structure. The scanning electron micrograph of the sample shows the average grain size of BSN∼1.22 μm. The field dependence of dielectric response and loss tangent were measured in the temperature range from 323 to 463 K and in the frequency range from 50 Hz to 1 MHz. The complex plane impedance plots show the grain boundary contribution for higher value of dielectric constant in the low frequency region. An analysis of the dielectric constant (ε′) and loss tangent (tan δ) with frequency was performed assuming a distribution of relaxation times as confirmed by the scaling behaviour of electric modulus spectra. The low frequency dielectric dispersion corresponds to DC conductivity. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with an activation energy of 0.71 eV. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary part of electric modulus M″ and dielectric loss spectra suggest that the relaxation describes the same mechanism at various temperatures in BSN. All the observations indicate the polydispersive relaxation in BSN.  相似文献   

12.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

13.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

14.
Se75Te25−xGax (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185–630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (102–105 Hz) and in the temperature range (293–333 K). The ac conductivity was found to obey the power low ωs where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and dielectric loss ε2 are frequency and temperature dependent. The maximum barrier height Wm calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.  相似文献   

15.
The complex perovskite oxide In(Mg1/2Ti1/2)O3 (IMT) is synthesized by a solid state reaction technique. The X-ray diffraction of the sample at 30 °C shows a monoclinic phase. The dielectric properties of the sample are investigated in the temperature range from 143 to 373 K and in the frequency range from 580 Hz to 1 MHz using impedance spectroscopy. An analysis of the dielectric constant ε′ and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The Cole-Cole model is used to explain the relaxation mechanism in IMT. The scaling behavior of imaginary part of electric modulus (M″) shows that the relaxation describes the same mechanism at various temperatures. The electronic structure and hence the ground state properties of IMT is studied by X-ray photoemission spectroscopy (XPS). The valence band XPS spectrum is compared with the electronic structure calculation. The electronic structure calculation indicates that the In-5s orbital introduces a significant density of states at the Fermi level, which is responsible for a high value of conductivity in IMT.  相似文献   

16.
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3.  相似文献   

17.
J SHARMA  S KUMAR 《Pramana》2016,86(5):1107-1118
The effect of Ge additive on the physical and dielectric properties of Se75Te25 and Se85Te15 glassy alloys has been investigated. It is inferred that on adding Ge, the physical properties i.e., average coordination number, average number of constraints and average heat of atomization increase but lone pair electrons, fraction of floppy modes, electronegativity, degree of crosslinking and deviation of stoichiometry (R) decrease. The effect of Ge doping on the dielectric properties of the bulk Se75Te25 and Se85Te15 glassy alloys has also been studied in the temperature range 300–350 K for different frequencies (1 kHz–5 MHz). It is found that, with doping, the dielectric constant ε and dielectric loss ε increase with increase in temperature and decrease with increase in frequency. The role of the third element Ge, as an impurity in the two pure binary Se75Te25 and Se85Te15 glassy alloys has been discussed in terms of the nature of covalent bonding and electronegativity difference between the elements used in making the aforesaid glassy systems.  相似文献   

18.
Se90Te10−xAgx (0 ≤ x ≤ 6) compositions were prepared by quenching technique. Thin films with different thicknesses of the obtained compositions were deposited on dry clean glass substrates by thermal evaporation technique. Energy dispersive X-ray spectroscopy (EDX) indicates that samples are nearly stoichiometric. X-ray diffraction patterns indicate that they are in the amorphous state. The optical constants, the refractive index n and the absorption index k, have been calculated from transmittance T and reflectance R through the spectral range of 400-2500 nm for the studied films with different thicknesses (165-711 nm). From the analysis of refractive index n data, high frequency dielectric constant ? was determined. Both ? and n are found to decrease with the increase of Ag content. The optical band gap is calculated for all compositions from the absorption coefficient analysis. The effect of the Ag addition on the obtained optical parameters has been discussed. The analysis of absorption index k data, revealed the existence of allowed indirect transitions for all compositions. It is indicated also that increase with increasing Ag content.  相似文献   

19.
The reliability characteristics and thermal conductivity of Ga30Sb70/Sb80Te20 nanocomposite multilayer films were investigated by isothermal resistance and transient thermoreflectance (TTR) measurements, respectively. The crystallization temperature and activation energy for the crystallization can be modulated by varying the layer thickness of Ga30Sb70. A data retention time of ten years of the amorphous state [Ga30Sb70 (3 nm)/Sb80Te20 (5 nm)]13, [Ga30Sb70 (5 nm)/Sb80Te20 (5 nm)]10, and [Ga30Sb70 (10 nm)/Sb80Te20 (5 nm)]7 was estimated when ambient temperature is 137, 163, and 178 °C, respectively. Ga30Sb70/Sb80Te20 nanocomposite multilayer films were found to have lower thermal conductivity in both the amorphous and crystalline state compared to Ge2Sb2Te5 film, which will promise lower programming power in the phase-change random access memory.  相似文献   

20.
Crystallization kinetics of the Se85S10Sb5 chalcogenide glassy alloy is studied by differential scanning calorimeter (DSC) non-isothermally. The glassy state of the as-prepared sample and the crystalline phases of the heat treated sample are characterized using X-ray diffraction. The glass transition activation energy Eg is found to be 65.2±0.8 kJ/mol and the crystallization activation energies for the first and the second crystallization peaks (Ec1 and Ec2) are found to be 70±0.8 and 85.2±0.8 kJ/mol, respectively. The determined kinetic parameters have made it possible to postulate the type of crystal growth exhibited in the crystallization process. The phases at which the alloy crystallizes after the thermal process have been identified by X-ray diffraction. The diffractogram of the transformed material indicates the presence of nanocrystallites of Sb2Se3, Se-S and Se, with a remaining additional amorphous matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号