首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  物理学   9篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 78 毫秒
1
1.
Nanoparticles of ZnFe2O4 have been prepared by using sol-gel method in two different mediums (acidic and basic) in order to observe the influence of the medium on the magnetic properties of the obtained nanoparticles. X-ray diffraction and Mössbauer studies of these samples show the presence of single-phase spinel structure. The average size of the particles as determined by X-ray diffraction increases with the annealing temperature from 18 to 52 nm. With the increase in particle size, magnetization decreases while the magnetization blocking temperature increases. Magnetization studies show that the samples prepared in basic medium have more ferrimagnetic nature as compared to those prepared in acidic medium. We understand this increase in magnetization as reflective of the increased degree of inversion (transfer of Fe3+ ions from octahedral to tetrahedral sites) in the particles of smaller size unit cells. From lattice parameter calculations on different particles it is determined that inversion is more favorable in the particles prepared in a basic medium than in the acidic medium due to the smaller cell size in the former.  相似文献
2.
The LaxCa1−xMnO3+δ compositions close to charge ordering (x∼0.5) show a gradual relaxation from a metallic/ferromagnetic state to an insulating/antiferromagnetic state with thermal cycling. Here, we report on the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature thermal treatment. We also show the changes in the magnetization and the thermoelectric power as the revived metastable state is cycled. We find that the changes in the thermoelectric power extend well into the region above the charge ordering temperatures. This suggests that the micro-structural changes accompanying the thermal cycling leave their imprint in the paramagnetic insulating state as well.  相似文献
3.
Atomistic static computer simulation techniques have been applied to investigate the energetics of defects and dopants in Sr2RuO4 (SRO) and Ca2RuO4 (CRO). Interatomic potentials have been derived which reproduced the crystal structures of these systems. Solution energies are calculated for different dopant ions to ascertain the site occupied by the dopant ion in the host lattice. Monovalent and divalent ions are predicted to substitute preferentially at the alkaline-earth site in both the systems. Trivalent cations of smaller ionic radii substitute at the Ru sites while those having larger ionic radii prefer to substitute at the Sr or Ca sites in SRO or CRO systems, respectively. In addition, there is a possibility of self-compensation, where a trivalent cation can substitute at both Sr(Ca) and Ru sites. Tetravalent dopants are found to substitute at the ruthenium sites in both systems.  相似文献
4.
A simulation study of lateral current injection 1.55 m laser with strain-compensated multiple quantum-well (MQW) active region (InGaAsP well, InGaAlAs barrier) is presented using self-consistent 2D numerical simulations. The effects of different mesa width and p-doping in the QWs on the carrier and gain uniformity across the active region are explored. A high p-doping in the quantum wells is found to increases the carrier and gain non-uniformity across the active region. The QW region close to the n-contact side does not provide much gain at high optical powers. An asymmetric optical waveguide design is proposed to help reduce the gain non-uniformity across the active region. By shifting the optical modal peak toward the p-side, the modal overlap between the gain region and the optical mode is improved and a more even carrier and gain distribution is obtained. However, due to reduced bandgap of the quaternary InGaAsP p-cladding, an enhanced electron leakage out of the QWs into the p-cladding degrades the laser efficiency and increases the threshold current. Transient time–domain simulations are also performed to determine the small-signal modulation response of the laser promising a simulated high modulation bandwidth suitable for direct-modulation applications.  相似文献
5.
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.  相似文献
6.
Polycrystalline BaMnO3 ceramic powders were prepared using the conventional mixed oxide route accompanied with several milling processes. Single phase formation was verified by recording the X-ray diffraction pattern of the powder as well as sintered pellet at room temperature. Scanning electron micrograph and energy dispersive X-ray spectrum of cross-sectional view have shown that sintered pellet is highly porous and contains only Ba, Mn and O elements, respectively. Analysis of impedance spectroscopy was carried out via the complex impedance and complex modulus formalisms. These results have shown that BaMnO3 behave as semiconducting material. Furthermore, as a consequence of electrically inhomogeneous nature of the sample, it was observed that the electroactive regions (such as grain, grain boundary and sample-electrode interface) are overlapped in the applied frequency domain with dominant grain boundary effect. An equivalent circuit model (R g C g)(R gb Q gb)(R e Q e) was employed to fit the temperature dependent impedance spectroscopy data. Study of grain and grain boundary conductivities suggest that grains are more conductive than grain boundaries and conduction mechanism followed correlated barrier hopping (CBH) model.  相似文献
7.
8.
9.
Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号