首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type-I clathrate Ba8Ga16Sn30 is known as a typical example showing glass-like behavior in the thermal conductivity at low temperatures. We report on thermoelectric properties above room temperature for the p- and n-type single crystals which were grown from Ga–Sn double flux and Sn single flux, respectively. The measurements of electrical resistivity showed hysteretic behaviors when the sample was heated to 600 K. Powder X-ray diffraction analysis indicated that the type-I structure changed to the type-VIII after the sample was heated to 600 K. By using the data of Seebeck coefficient, electrical resistivity, and thermal conductivity, we estimated the dimensionless figure of merit ZT for the type-I Ba8Ga16Sn30. For the p- and n-type samples, the values of ZT reach 0.58 and 0.50 at around 450 K, respectively, which values are approximately half of those for the type-VIII counterparts.  相似文献   

2.
Epitaxial Ba8Ga16Ge30 clathrate thin films were successfully grown on Si substrate by using helicon magnetron sputtering. The (1 0 0) lattice of Ba8Ga16Ge30 was identified grown on four Si(2 0 0) lattices in small mismatch (0.1%). Both the color of samples and XRD results suggest 600 °C is the optimal substrate temperature for the growth of high quality Ba-Ga-Ge clathrate film on Si substrates. High Seebeck coefficients and electrical resistivities for the deposited clathrate thin films in comparison with those of bulk are obtained. The high crystal quality and thermionic effects in heterostructures may contribute to the larger Seebeck coefficients, while the increasing of interface scattering for electrons probably is the reason for large electrical resistivities. Although the thermoelectric (TE) results are not ideal as designed, our results are significant due to the first successful work on epitaxial growth of Ba8Ga16Ge30 clathrate thin films on Si substrate with large Seebeck coefficient.  相似文献   

3.
The pressure induced first-order semiconductor-to-metal (α-to-β) phase transition has been studied in the GaxIn1?xSb alloy system. Based on hydrostatic polycrystalline X-ray measurements, the transition pressure, Pt, the pressure dependence of the molar volumes in each phase, and the volume change at Pt, ΔVα,β, have been determined across the compositional range. These results are used with published thermophysical data for the α-phase to estimate the excess enthalpy of mixing in the β-phase. The experimental values of Pt and of ΔVα,β are compared for the end compounds, GaSb and InSb, with values calculated from Van Vechten's quantum dielectric theory. Suggestions are made for possible use of psuedo-binary alloys of the III-V compounds for high pressure calibration standards.  相似文献   

4.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

5.
A method to precisely control the carrier properties for single crystalline type-I clathrate is investigated. Polycrystalline samples are synthesized first according to the theoretical ratio for carrier control, and followed by Ga flux single crystal growth process. The composition of single crystals was determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP), and the detailed structure was determined by using high-resolution X-ray diffraction. The carrier type and concentration can be tuned by changing the Ba/Ga composition for Ba8Ga16Ge30 (BGG), while only n-type carrier can be achieved in Sr8Ga16Ge30 (SGG). X-ray diffraction analysis shows that the different occupancy factors of the endohedral chemical species may be the reason for this carrier difference between BGG and SGG.  相似文献   

6.
Tin oxide doped β-Ga2O3 single crystals are recognized as transparent conductive oxides (TCOs) materials. They have a larger band gap (4.8 eV) than any other TCOs, thus can be transparent in UV region. This property shows that they have the potential to make the optoelectronic device used in even shorter wavelength than usual TCOs. β-Ga2O3 single crystals doped with different Sn4+ concentrations were grown by the floating zone technique. Their optical properties and electrical conductivities were systematically studied. It has been found that their conductivities and optical properties were influenced by the Sn4+ concentrations and annealing.  相似文献   

7.
In this work by applying first principles calculations structural, electronic and optical properties of Ca3Bi2 compound in hexagonal and cubic phases are studied within the framework of the density functional theory using the full potential linearized augmented plane wave (FP-LAPW) approach. According to our study band gap for Ca3Bi2 in hexagonal phase are 0.47, 0.96 and 1?eV within the PBE-GGA, EV-GGA and mBJ-GGA, respectively. The corresponding values for cubic phase are 1.24, 2.08 and 2.14?eV, respectively. The effects of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths and anti-symmetry gap are investigated. It is found that the hydrostatic pressure increases the band widths of all bands below the Fermi energy while it decreases the band gap and the anti-symmetry gap. In our calculations, the dielectric tensor is derived within the random phase approximation (RPA). The first absorption peak in imaginary part of dielectric function for both phases is located in the energy range 2.0–2.5?eV which are beneficial to practical applications in optoelectronic devices in the visible spectral range. For instance, hexagonal phase of Ca3Bi2 with a band gap around 1?eV can be applied for photovoltaic application and cubic phase with a band gap of 2?eV can be used for water splitting application. Moreover, we found the optical spectra of hexagonal phase are anisotropic along E||x and E||z.  相似文献   

8.
Single crystals of Bi2Sn2O7 were grown in a Bi2O3 flux. Phase transitions were identified at about 90 and 680° using X-ray, SHG, DSC, dielectric, and optical data. γ-Bi2Sn2O7, which exists above 680°C is centric and cubic with a = 10.73 Å at 700°, and it probably has the ideal pyrochlore structure. β-Bi2Sn2O7, which exists between 680° and about 90°C, is acentric but remains cubic with a = 21.40 Å. α-Bi2Sn2O7, which exists from about 90°C to below room temperature, is acentric and noncubic, probably tetragonal with a = 21.328 and c = 21.545 Å. The α-β transition is first order, and the β-γ transition appears to be second order. Substitutions of Pb2+ or Cd2+ for Bi3+ and of Ga3+, Rh3+ Sc3+, In3+, Sb5+ Nb5+ or Ta5+ for Sn4+ lower the α-β transition temperature.  相似文献   

9.
The hydrogen absorption behavior of Laves phase Ho1−xTixCo2 (x=0.1-0.6) alloys has been investigated by pressure-concentration (PC) isotherms and cyclic-, temperature- and pressure-dependent absorption kinetics. The PC isotherms and kinetics of hydrogen absorption have been studied in the pressure range 0.01-1 bar and temperature range 50-200 °C using Sievert's-type apparatus. The drastic changes in the induction period and particle size during the activation process have been discussed based on the kinetics of repeated hydrogenation cycles and scanning electron microscopy (SEM) images of the hydrides at different hydriding cycles, respectively. The experimental results of kinetic curves are interpreted using the Johnson-Mehl-Avrami (JMA) model, and the reaction order and reaction rate have been determined. The α-, (α+β)- and β-phase regions in Ho1−xTixCo2-H have been identified from the different slope regions of the first-order-type kinetic plots. The dependence of the reaction rate parameter on hydriding pressure and temperature in the (α+β)-phase region has been discussed.  相似文献   

10.
在0—7GPa静压范围内测量了自发有序Ga0.5In0.5P合金的室温光致发光谱.三块样品的常压带隙能量分别比无序样品低115,92和43meV,它们的压力系数也从无序样品的92meV/GPa分别减小到75,81和83meV/GPa.用Γ-L相互作用模型可以同时解释有序合金的带隙能量的降低以及压力系数的减小.得到的Γ-L相互作用势分别为0.19,0.15和0.10eV.表明在自发有序Ga0.5In0.5P合金中存在着的  相似文献   

11.
The phase transformation from the non-polar α-phase to the polar electroactive β-phase of polyvinylidene fluoride (PVDF) has been investigated using the fluorescence from Nile red. Films of α-PVDF doped with Nile red were stretched at controlled rates at a temperature of 80 °C to produce the α- to β-phase transition. The thermo/mechanical dependent changes in the crystalline structure are related to the physical rotation of the polar (CH2-CF2) group, which can be monitored by steady state fluorescence techniques. The degree of phase transformation is related to variation in the fluorescence, which in turn is linked to local dielectric constant of the polymer. The variation of the refractive index is more associated to the alignment of the polymeric chains than to the phase transformation. Thus, fluorescence is a suitable technique to monitor phase transitions coupled to a variation in the polarity of the dielectric medium.  相似文献   

12.
The effect of pressure on the optical absorption edge of mixed crystals Cd1-xMnxTe with different manganese concentrations is reported. The observed absorption edge shifts to higher energy with increasing pressure at a rate of α=7?8×10?3 eV/kbar and a second order coefficient of β=-4×10?5 eV/kbar2 for x<0.5, to lower energy with increasing pressure at a rate of α=-5.0 ×10?3 eV/kbar for x?0.5. A phase transition occurs for all the samples studied. The absorption edge of the new phase is outside the wavenumber range of the instrument. The physical origins of different pressure coefficients are discussed in the light of the deformation potentials of energy band states and the hybridization of the Mn2+ 3d levels with the p-like states in the valence band.  相似文献   

13.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

14.
Ga and As 2 emission bands of the compounds under study consist of a more or less pronounced 2 main band, a short-wavelength side band which according to calculations by the ‘sudden approximation’ method may be essentially assigned to a KMIV,VMIV,VNII,III satellite, and long-wavelength 3d → 1s bands. Compounds such as Ga2(SO4)3, Ga(NO3)3, Ga2O3, NaH2AsO4, K3AsO4, and As2O3 also show long-wavelength side-maxima at a distance of about 12 and 15 eV, respectively, from the main band, which are due to electron transitions from bands or levels with a preponderant 0 2s character.The 2 main band of AIIIBV compounds is less pronounced owing to the widths of the K levels and to instrumental distortions. The distance between the maxima of the state density of the upper valence bands can be recognized only by a shoulder or asymmetry of the band at the long-wavelength side. By calculation of the Ga and As 2 bands in GaAs with a pseudopotential kp band structure method, and allowing for the influence of both the transition probability and instrumental distortion excellent agreement with experiment is obtained.  相似文献   

15.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

16.
Pressure induced phase transformation and amorphization for Ge-based type-I clathrates have been investigated by means of synchrotron XRD and Raman experiments under high pressure. The XRD results of Sr8Ga16Ge30, Ba8Ga16Ge30, and I8Sb8Ge38 demonstrated volume collapse phase transitions at 18, 33, and 42 GPa, respectively. Reitveld analyses performed for I8Sb8Ge38 reveal a deformation of six-member rings of 14-hedron cages with increasing pressure.  相似文献   

17.
邓书康  李德聪  申兰先  郝瑞亭 《中国物理 B》2012,21(1):17401-017401
Single-crystal samples of type-VIII Ba8Ga16 - xCuxSn30 (x=0, 0.03, 0.06, 0.15) clathrates were prepared using the Sn-flux method. At room temperature the carrier density, n, is 3.5-5×1019 cm-3 for all the samples, the carrier mobility, μH, increases to more than twice that of Ba8Ga16Sn30 for all the Cu doping samples, and consequently the electrical conductivity is enhanced distinctly from 1.90×104 S/m to 4.40×104 S/m, with the Cu composition increasing from x=0 to x=0.15. The Seebeck coefficient, α , decreases slightly with the increases in Cu composition. The κ values are about 0.72 W/mK at 300 K and are almost invariant with temperature up to 500 K for the samples with x=0 and x=0.03. The lattice thermal conductivity, κL, decreases from 0.59 W/mK for x=0 to 0.50 W/mK for x=0.03 at 300 K. The figure of merit for x=0.03 reaches 1.35 at 540 K.  相似文献   

18.
以Cd作为掺杂元素,用熔融法结合放电等离子体烧结(SPS)技术制备了具有不同Cd含量的Ba8Ga16CdxGe30-xx=0.95, 1.00, 1.05, 1.10) Ⅰ型笼合物,研究了Cd掺杂对其结构及热电性能的影响.Rietveld结构解析表明所制备的Ba8Ga16CdxGe30- 关键词: p型笼合物 结构 热电性能  相似文献   

19.
We report the temperature dependence of electrical resistance (R) and thermopower (S) of clathrate Cs8Sn44 under high pressure up to 1.2 GPa. We observe a reversible gap widening, prominent relaxation effect of R, irreversible increase of |S| under high pressure. We also find that the power factor S2σ (σ: electrical conductivity) reaches a maximum at pressure of 0.3 GPa. Comparison of the experimental results with band structure calculations suggests that the intrinsic vacancy in the clathrate structure of Cs8Sn44 plays an important role in transport properties under high pressure. Measurements on Cs8Zn4Sn42, a clathrate which has defects other than vacancies, are compared with Cs8Sn44. The results indicate that replacing Sn by Zn has similar effect as the intrinsic vacancy on S.  相似文献   

20.
Diffuse reflectance spectra of the superionic conductor Ag2HgI4 powder were recorded between 4.2 K and 370 K and transformed into the Kubelka-Munk function. Six parameters of the spectral band of this function, related to the absorption band of the particular phase, were considered. The graph representing the logarithm of the integrated Kubelka-Munk spectral band versus inverse temperature was most informative. The Arrhenius behaviour of this function, in a temperature interval, was related to the existence of a phase with constant lattice structure. The non-Arrhenius behaviour was tentatively attributed to a temperature sensitive phase. Thus fifteen different crystalline phases were found, only four of them having been, up to now, unquestionably admitted. In particular, evidence was given for the existence of two superionically conducting phases and two room temperature phases. All the graphs representing the chosen parameters versus inverse temperature pointed to the existence of two separate sequences of phases: one generated by cooling gradually the β-phase, stable at room temperature, to low temperatures (β sequence), the other by heating the β-phase above the σβ (T)+ transition point and cooling gradually the formed α'′-phase (α′ sequence). The concept of photon absorption thermal activation energy was introduced. Its largest value was of the order of magnitude of the electrical conductivity thermal activation energy of Ag2HgI4. Estimates of energy band gaps and their evolution with temperature were made. It is suggested that the polymorphism of the substance is the main reason for the hysteresis loop in the superionic conductivity transition region. The low temperature phases manifested luminescence caused by exciton decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号