首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.

The work presents the qualitative analysis of the free boundary value problem related to the detachment process in multispecies biofilms. In the framework of continuum approach to one-dimensional mathematical modelling of multispecies biofilm growth, we consider the system of nonlinear hyperbolic partial differential equations governing the microbial species growth, the differential equation for the biomass velocity, the differential equation that governs the free boundary evolution and also accounts for detachment, and the elliptic system for substrate dynamics. The characteristics are used to convert the original moving boundary equation into a suitable differential equation useful to solve the mathematical problem. We also provide another form of the same equation that could be used in numerical applications. Several properties of the solutions to the free boundary problem are shown, such as positiveness of the functions that describe the microbial concentrations and estimates on the characteristic functions. Uniqueness and existence of solutions are proved by introducing a suitable system of Volterra integral equations and using the fixed point theorem.

  相似文献   

2.
The work presents the qualitative analysis of the free boundary value problem related to the invasion model for multispecies biofilms. This model is based on the continuum approach for biofilm modeling and consists of a system of nonlinear hyperbolic partial differential equations for microbial species growth and spreading, a system of semilinear elliptic partial differential equations describing the substrate trends and a system of semilinear elliptic partial differential equations accounting for the diffusion and reaction of motile species within the biofilm. The free boundary evolution is regulated by a nonlinear ordinary differential equation. Overall, this leads to a free boundary value problem essentially hyperbolic. By using the method of characteristics, the partial differential equations constituting the invasion model are converted to Volterra integral equations. Then, the fixed point theorem is used for the uniqueness and existence result. The work is completed with numerical simulations describing the invasion of nitrite oxidizing bacteria in a biofilm initially constituted by ammonium oxidizing bacteria.  相似文献   

3.
The work presents a contribution to the mathematical modelling of formation and growth of multispecies biofilms in the framework of continuum approach, without claiming to be complete. Mathematical models for biofilms often lead to consider free boundary value problems for nonlinear PDEs. The emphasis is on the qualitative analysis, uniqueness and existence of solutions and their main properties. Biofilm life is a complex biological process formed by several phases from the formation, development of colonies, attachment and detachment of microbial mass from (to) biofilm to (from) bulk liquid. Most of these processes are modelled and discussed. Moreover, some problems of interest for engineering and biological applications are considered. Indeed, we discuss the free boundary value problem related to biofilm reactors extensively used in wastewater treatment, and the invasion of new species into an already constituted biofilm with the successive colonizations. The main mathematical methodology used is the method of characteristics. The original differential problem is converted to integral equations. Then, the fixed point theorem is applied.  相似文献   

4.
The work presents an analysis of solutions to a free boundary value problem for a multispecies biofilm growth model in one space dimension. The mathematical model consists of a system of nonlinear partial differential equations and a free boundary. It is quite general and can include a large variety of special situations. An existence and uniqueness theorem is discussed and properties of solutions are given. As a numerical application, simulations for a heterotrophic–autotrophic competition are developed by the method of characteristics.  相似文献   

5.
The persistence of subsonic phase boundaries in a multidimensional Van der Waals fluid is analyzed. The phase boundary is considered as a sharp free boundary that connects liquid and vapor bulk phase dynamics given by the isothermal Euler equations. The evolution of the boundary is driven by effects of configurational forces as well as surface tension. To analyze this problem, the equations and trace conditions are linearized such that one obtains a general hyperbolic initial boundary value problem with higher‐order boundary conditions. A global existence theorem for the linearized system with constant coefficients is shown. The proof relies on the normal mode analysis and a linear form in suitable spaces that is defined using an associated adjoint problem. Especially, the associated adjoint problem satisfies the uniform backward in time Kreiss–Lopatinski? condition. A new energy‐like estimate that also includes surface energy terms leads finally to the uniqueness and regularity for the found solutions of the problem in weighted spaces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Multidimensional free boundary problems for elliptic and parabolicdifferential equations, among them one phase Stefan problems,are partially discretized with the method of lines. The multi-pointfree boundary problem for the resulting system of second orderordinary differential equations is solved iteratively with anSOR type iteration. At each step of this iteration a free boundaryproblem for a single ordinary differential equation must besolved for which an initial value technique is used. The methodcan effectively cope with quite general space and time dependentfree surface conditions.  相似文献   

7.
考虑到薄膜表面的热通量主要是来自辐射,因而采用一个依赖时间的拟二维拟线性扩散方程的Stefan问题(混合初边值问题)作为该问题的数学模型。用一种具有Crank-Nicholson格式的无条件稳定的有限差分析来求解抛物型偏微分方程的定解问题。用追赶法求解离散化的三对角方程组,然后用预估校正法求解拟线性扩散方程,从而避免了示解非线性差分方程组,琥珀亚硝酸酯在纵向自由薄膜凝固期内的温度分布数值计算结果和  相似文献   

8.
Tsvetkov  D. O. 《Mathematical Notes》2020,107(1-2):160-172

We study the problem of small motions of an ideal stratified liquid whose free surface consists of three regions: liquid surface without ice, a region of elastic ice, and a region of crumbled ice. The elastic ice is modeled by an elastic plate. The crumbled ice is understood as weighty particles of some matter floating on the free surface. Using the method of orthogonal projection of boundary conditions on a moving surface and the introduction of auxiliary problems, we reduce the original initial boundary value problem to an equivalent Cauchy problem for a second-order differential equation in a Hilbert space. We obtain conditions under which there exists a strong (with respect to time) solution of the initial boundary value problem describing the evolution of the hydrodynamic system under consideration.

  相似文献   

9.
10.
Summary The method of lines is used to solve Poisson's equation on an irregular domain with nonlinear or free boundary conditions. The partial differential equation is approximated by a system of second order ordinary differential equations subject to multi-point boundary conditions. The system is solved with an SOR iteration which employs invariant imbedding for each one dimensional problem. An application of the method to a boundary control problem and to a free surface problem arising in electrochemical machining is described. Finally, some theoretical convergence results are presented for a model problem with radiative boundary conditions on fixed boundaries.This work was supported by the U.S. Army Research Office under Grant DA-AG29-76-G-0261  相似文献   

11.
The general nonlinear self-adjoint eigenvalue problem for a differential algebraic system of equations on a half-line is examined. The boundary conditions are chosen so that the solution to this system is bounded at infinity. Under certain assumptions, the original problem can be reduced to a self-adjoint system of differential equations. After certain transformations, this system, combined with the boundary conditions, forms a nonlinear self-adjoint eigenvalue problem. Requirements for the appropriate boundary conditions are clarified. Under the additional assumption that the initial data are monotone functions of the spectral parameter, a method is proposed for calculating the number of eigenvalues of the original problem that lie on a prescribed interval of this parameter.  相似文献   

12.
A new formalism in the theory of linear boundary value problems involving causal functional differential equations is presented. The approach depends on the construction of a differentiable family of boundary problems into which the original boundary value problem is imbedded. The formalism then generates an initial value problem which is equivalent to the family of imbedded problems. An important aspect of the method is that the equations in the initial value algorithm are ordinary differential equations rather than functional differential equations, although nonlinear and of higher dimension. Applications of the theory to differential-delay and difference equations are given.  相似文献   

13.
半导体器件的瞬时状态由包含3个拟线性偏微分方程所组成的方程组的初边值问题来描述.在三角剖分的基础上,对椭圆型的电子位势方程采用混合有限体积元法来逼近,对对流扩散型的电子浓度和空穴浓度方程采用迎风有限体积元方法来逼近,并进行了详细的理论分析,得到了最优阶的误差估计结果.最后,针对混合有限体积元法和迎风有限体积元法分别单独使用以及两种方法结合使用的情形给出了不同的数值算例.  相似文献   

14.
Sergiy Nesenenko 《PAMM》2005,5(1):75-78
We study the homogenization of the quasistatic initial boundary value problem with internal variables which models the deformation behavior of viscoplastic bodies with a periodic microstructure. This problem is represented through a system of linear partial differential equations coupled with a nonlinear system of differential equations or inclusions. Recently it was shown by Alber [2] that the formally derived homogenized initial boundary value problem has a solution. From this solution we construct an asymptotic solution for the original problem and prove that the difference of the exact solution and the asymptotic solution tends to zero if the lengthscale of the microstructure goes to zero. The work is based on monotonicity properties of the differential equations or inclusions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The mathematical model of semiconductor devices is described by the initial boundary value problem of a system of three nonlinear partial differential equations. One equation in elliptic form is for the electrostatic potential; two equations of convection-dominated diffusion type are for the electron and hole concentrations. Finite volume element procedure are put forward for the electrostatic potential, while upwind  相似文献   

16.
This paper is concerned with a procedure for estimating the global discretization error arising when a boundary value problem for a system of second order differential equations is solved by the simple shooting method, without transforming the original problem in an equivalent first order problem. Expressions of the global discretization error are derived for both linear and nonlinear boundary value problems, which reduce the error estimation for a boundary value problem to that for an initial value problem of same dimension. The procedure extends to second order equations a technique for global error estimation given elsewhere for first order equations. As a practical result the accuracy of the estimates for a second order problem is increased compared with the estimates for the equivalent first order problem.  相似文献   

17.
The article deals with the initial boundary value problem for an infinite system of first order quasilinear functional differential equations. A comparison result concerning infinite systems of differential difference inequalities is proved. A function satisfying such inequalities is estimated by a solution of a suitable Cauchy problem for an ordinary functional differential system. The comparison result is used in an existence theorem and in the investigation of the stability of the numerical method of lines for the original problem. A theorem on the error estimate of the method is given. The infinite system of first order functional differential equations contains, as particular cases, equations with a deviated argument and integral differential equations of the Volterra type.  相似文献   

18.
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge–Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.  相似文献   

19.
In this paper we study a system of nonlinear partial differential equations which we write as a Burgers equation for matrix and use the Hopf-Cole transformation to linearize it. Using this method we solve initial value problem and initial boundary value problems for some systems of parabolic partial differential equations. Also we study an initial value problem for a system of nonlinear partial differential equations of first order which does not have solution in the standard distribution sense and construct an explicit solution in the algebra of generalized functions of Colombeau. Received November 1999  相似文献   

20.
This paper deals with the mathematical analysis of a nonlinear system of three differential equations of mixed type. It describes the generation of fast ice streams in ice sheets flowing along soft and deformable beds. The system involves a nonlinear parabolic PDE with a multivalued term in order to deal properly with a free boundary which is naturally associated to the problem of determining the basal water flux in a drainage system. The other two equations in the system are an ODE with a nonlocal (integral) term for the ice thickness, which accounts for mass conservation and a first order PDE describing the ice velocity of the system. We first consider an iterative decoupling procedure to the system equations to obtain the existence and uniqueness of solutions for the uncoupled problems. Then we prove the convergence of the iterative decoupling scheme to a bounded weak solution for the original system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号