首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The second boundary value problem for the biharmonic equation is equivalent to the Dirichlet problems for two Poisson equations. Several finite difference approximations are defined to solve these Dirichlet problems and discretization error estimates are obtained. It is shown that the splitting of the biharmonic equation produces a numerically efficient procedure.  相似文献   

2.
In FEM calculations the discretization should be chosen in a way, that further mesh refinement does not change the results. Otherwise the discretization error might yield unphysically stiff material behavior. If elasto‐plasticity is considered, a second type of error due to the time discretization of the evolution equations has to be taken into account. Due to the non‐linearity of the underlying initial boundary value problem, large time increments often result in non‐converging solutions during equilibrium iteration. In our approach the time integration error resulting from a second order BDF2 time integration method is calculated and utilized in an automatic step size control. In conjunction with a DAE‐treatment of the initial boundary value problem, it allows in the average considerably larger time steps compared to classical ‘elastic predictor – plastic corrector’ schemes. To reduce the discretization error, adaptive mesh‐refinement based on a Z2‐error‐estimator is performed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We prove global existence of a solution to an initial and boundary‐value problem for a highly nonlinear PDE system. The problem arises from a thermo‐mechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. The existence and regularity of the solutions are here investigated by means of a time discretization—textita priori estimates—passage to the limit procedure joined with compactness and monotonicity arguments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The paper consists of two parts. In the first part, we propose a procedure to estimate local errors of low order methods applied to solve initial value problems in ordinary differential equations (ODEs) and index 1 differential-algebraic equations (DAEs). Based on the idea of defect correction we develop local error estimates for the case when the problem data is only moderately smooth. Numerical experiments illustrate the performance of the mesh adaptation based on the error estimation developed in this paper. In the second part of the paper, we will consider the estimation of local errors in context of stochastic differential equations with small noise. AMS subject classification (2000)  65L06, 65L80, 65L50, 65L05  相似文献   

5.
The paper consists of two parts. In the first part of the paper, we proposed a procedure to estimate local errors of low order methods applied to solve initial value problems in ordinary differential equations (ODEs) and index-1 differential-algebraic equations (DAEs). Based on the idea of Defect Correction we developed local error estimates for the case when the problem data is only moderately smooth, which is typically the case in stochastic differential equations. In this second part, we will consider the estimation of local errors in context of mean-square convergent methods for stochastic differential equations (SDEs) with small noise and index-1 stochastic differential-algebraic equations (SDAEs). Numerical experiments illustrate the performance of the mesh adaptation based on the local error estimation developed in this paper. The first author acknowledges support by the BMBF-project 03RONAVN and the second author support by the Austrian Science Fund Project P17253.  相似文献   

6.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

7.
In this paper, we consider the boundary value problem with the shift for nonlinear uniformly elliptic equations of second order in a multiply connected domain. For this sake, we propose a modified boundary value problem for nonlinear elliptic systems of first order equations, and give a priori estimates of solutions for the modified boundary value problem. Afterwards we prove by using the Schauder fixedpoint theorem that this boundary value problem with some conditions has a solution. The result obtained is the generlization of the corresponding theorem on the Poincare boundary value problem.  相似文献   

8.
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart‐Thomas discretization which is related to the Crouzeix‐Raviart nonconforming finite element scheme in the lowest‐order case. The effective and guaranteed a posteriori error control for this nonconforming velocity‐oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf‐sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016  相似文献   

9.
The present paper deals with the mixed boundary value problem for elliptic equations with degenerate rank 0. We first give the formulation of the problem and estimates of solutions of the problem, and then prove the existence of solutions of the above problem for elliptic equations by the above estimates and the method of parameter extension. We use the complex method, namely first discuss the corresponding problem for degenerate elliptic complex equations of first order, afterwards discuss the above problem for degenerate elliptic equations of second order.  相似文献   

10.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

11.
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes’ equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by Maz’ya (DFG-Kolloquium des DFG-Forschungsschwerpunktes Randelementmethoden, 1991) and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes’ equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström’s method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.  相似文献   

12.
This paper presents a fourth-order kernel-free boundary integral method for the time-dependent, incompressible Stokes and Navier-Stokes equations defined on irregular bounded domains. By the stream function-vorticity formulation, the incompressible flow equations are interpreted as vorticity evolution equations. Time discretization methods for the evolution equations lead to a modified Helmholtz equation for the vorticity, or alternatively, a modified biharmonic equation for the stream function with two clamped boundary conditions. The resulting fourth-order elliptic boundary value problem is solved by a fourth-order kernel-free boundary integral method, with which integrals in the reformulated boundary integral equation are evaluated by solving corresponding equivalent interface problems, regardless of the exact expression of the involved Green's function. To solve the unsteady Stokes equations, a four-stage composite backward differential formula of the same order accuracy is employed for time integration. For the Navier-Stokes equations, a three-stage third-order semi-implicit Runge-Kutta method is utilized to guarantee the global numerical solution has at least third-order convergence rate. Numerical results for the unsteady Stokes equations and the Navier-Stokes equations are presented to validate efficiency and accuracy of the proposed method.  相似文献   

13.
In order to assess the quality of approximate solutions obtained in the numerical integration of ordinary differential equations related to initial-value problems, there are available procedures which lead to deterministic estimates of global errors. The aim of this paper is to propose a stochastic approach to estimate the global errors, especially in the situations of integration which are often met in flight mechanics and control problems. Treating the global errors in terms of their orders of magnitude, the proposed procedure models the errors through the distribution of zero-mean random variables belonging to stochastic sequences, which take into account the influence of both local truncation and round-off errors. The dispersions of these random variables, in terms of their variances, are assumed to give an estimation of the errors. The error estimation procedure is developed for Adams-Bashforth-Moulton type of multistep methods. The computational effort in integrating the variational equations to propagate the error covariance matrix associated with error magnitudes and correlations is minimized by employing a low-order (first or second) Euler method. The diagonal variances of the covariance matrix, derived using the stochastic approach developed in this paper, are found to furnish reasonably precise measures of the orders of magnitude of accumulated global errors in short-term as well as long-term orbit propagations.  相似文献   

14.
In this paper, we are concerned with the error analysis for the finite element solution of the two-dimensional exterior Neumann boundary value problem in acoustics. In particular, we establish explicit priori error estimates in H1 and L2- norms including both the effect of the truncation of the DtN mapping and that of the numerical discretization. To apply the finite element method (FEM) to the exterior problem, the original boundary value problem is reduced to an equivalent nonlocal boundary value problem via a Dirichlet-to-Neumann (DtN) mapping represented in terms of the Fourier expansion series. We discuss essential features of the corresponding variational equation and its modification due to the truncation of the DtN mapping in appropriate function spaces. Numerical tests are presented to validate our theoretical results.  相似文献   

15.
In this paper, we derive new two-sided a posteriori estimates of the modeling errors for linear elliptic boundary value problems with periodic coefficients solved by homogenization. Our approach is based on the concept of functional a posteriori error estimation. The estimates are obtained for the energy norm and use solely the global flux of the non-oscillatory solution of the homogenized model and solution of a boundary value problem on the cell of periodicity.  相似文献   

16.
In this paper we present a certain collocation method for the numerical solution of a class of boundary integral equations of the first kind with logarithmic kernel as principle part. The transformation of the boundary value problem into boundary singular integral equation of the first kind via single-layer potential is discussed. A discretization and error representation for the numerical solution of boundary integral equations has been given. Quadrature formulae have been proposed and the error arising due to the quadrature formulae used has been estimated. The convergence of the solution with respect to the proposed numerical algorithm is shown and finally some numerical results have been presented.  相似文献   

17.
We discuss an error estimation procedure for the global error of collocation schemes applied to solve singular boundary value problems with a singularity of the first kind. This a posteriori estimate of the global error was proposed by Stetter in 1978 and is based on the idea of Defect Correction, originally due to Zadunaisky. Here, we present a new, carefully designed modification of this error estimate which not only results in less computational work but also appears to perform satisfactorily for singular problems. We give a full analytical justification for the asymptotical correctness of the error estimate when it is applied to a general nonlinear regular problem. For the singular case, we are presently only able to provide computational evidence for the full convergence order, the related analysis is still work in progress. This global estimate is the basis for a grid selection routine in which the grid is modified with the aim to equidistribute the global error. This procedure yields meshes suitable for an efficient numerical solution. Most importantly, we observe that the grid is refined in a way reflecting only the behavior of the solution and remains unaffected by the unsmooth direction field close to the singular point.  相似文献   

18.
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem.Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension,the existence of solutions of the above problem is proved.In this article,the complex analytic method is used,namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed,afterwards the above problem for the degenerate elliptic equations of second order is solved.  相似文献   

19.
Tatiana S. Samrowski 《PAMM》2014,14(1):849-850
We derive new estimates of modeling errors for linear elliptic boundary value problems with periodic coefficients solved by homogenization method. Our approach is based on the concept of functional a posteriori error estimation. The estimates are obtained for the energy norm and use solely the global flux of the non-oscillatory solution of the homogenized model and solution of a boundary value problem on the cell of periodicity. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号