首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
压电压磁复合材料中界面裂纹对弹性波的散射   总被引:5,自引:1,他引:4  
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.  相似文献   

2.
压电压磁复合材料中一对平行裂纹对弹性波的散射   总被引:2,自引:2,他引:0  
利用Schmidt方法对压电压磁复合材料中一对平行对称裂纹对反平面简谐波的散射问题进行了分析,借助富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程.在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式,最终获得了应力强度因子、电位移强度因子、磁通量强度因子三者之间的关系.结果表明,压电压磁复合材料中平行裂纹动态反平面断裂问题的应力奇异性与一般弹性材料中的动态反平面断裂问题的应力奇异性相同,同时讨论了裂纹间的屏蔽效应.  相似文献   

3.
对不同功能梯度压电压磁层状介质中,共线界面裂纹对简谐应力波作用下的动态问题,进行了分析.经Fourier变换,使问题的求解转换为求解以裂纹面上位移间断为未知量的三重对偶积分方程,三重对偶方程可以采用Schmidt方法来求解,进而分析了功能梯度参数、入射波频率和层状介质厚度对应力、电位移和磁通量强度因子的影响.  相似文献   

4.
We consider a plane strain problem for a piezoelectric/piezomagnetic bimaterial space with a crack in the region of the interface of the materials. At infinity, tensile and shear stresses and heat, electric, and magnetic flows are set. Using representations for all mechanical, thermal, and electromagnetic factors in terms of piecewise analytic functions, we formulate problems of linear conjugation that correspond to a model of an open crack and models taking into account the contact zone in the vicinity of a crack tip. Exact analytic solutions of the indicated problems are constructed. Expressions for stresses, the electric and magnetic inductions, jumps of derivatives of displacements, and electric and magnetic potentials on the interface are written. The coefficients of intensities of the indicated factors are presented. We derive a transcendental equation for the determination of the real length of the contact zone. The dependences of this length and the coefficients of intensity on the set external influences are investigated.  相似文献   

5.
In this paper, the basic solution of two collinear cracks in a piezoelectric material plane subjected to a uniform tension loading is investigated by means of the non-local theory. Through the Fourier transform, the problem is solved with the help of two pairs of integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the integral equations, the jumps of displacements across the crack surfaces are directly expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the interaction of two cracks, the materials constants and the lattice parameter on the stress field and the electric displacement field near crack tips. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to using the maximum stress as a fracture criterion in piezoelectric materials.  相似文献   

6.
The focus of this paper is on the simulation of two-phase magneto-electric (ME) composites, consisting of a piezoelectric matrix with piezomagnetic inclusions. In such composites, the coupling between electric and magnetic fields is strain-induced and thus ME coupling arises as a product porperty. In order to compute the effective properties of the composite a computational homogenization scheme based on the Finite Element Method will be applied. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This article conducts an exact analysis of a thermal dielectric crack moving in piezoelectric materials. Self-generating thermal and electric loadings by the crack interior are exerted on the crack surfaces as well as various external loadings including a shearing force. Fundamental solutions of the thermal and electro-elastic coupling fields are given by determining a temperature function and a harmonic function with eigenvalues properties due to material properties considered. Analytical expressions are obtained benefiting evaluation of key parameters. Numerical analysis is done and some interesting observations are found. There is a critical crack velocity within and beyond which the electric loading exerts different influences on the thermal flux of crack interior and the thermal stress intensity factor.  相似文献   

8.
The delamination buckling problem for a rectangular plate made of an orthotropic composite material is studied. The plate contains a band crack whose faces have an initial infinitesimal imperfection. The subsequent development of this imperfection due to an external compressive load acting along the crack is studied through the use of the three-dimensional geometrically nonlinear field equations of elasticity theory for anisotropic bodies. A criterion of initial imperfection is used in determining the critical forces. The corresponding boundary-value problems are solved by employing the boundary-form perturbation technique and the FEM. Numerical results for the critical force are presented.  相似文献   

9.
采用Schmidt方法分析了在简谐反平面剪切波作用下,两个半空间夹层压电材料中的共线裂纹的动力学行为.压电材料层内裂纹垂直于界面,电边界条件假设为可导通.通过Fourier变换,使问题的求解转换为两对三重积分对偶方程.通过数值计算,给出了裂纹的几何尺寸、压电材料常数、入射波频率等对于应力强度因子的影响.结果表明,在不同的入射波频率范围,动力场将阻碍或促使压电材料内裂纹的扩展.与不可导通电边界条件相比,导通裂纹表面的电位移强度因子比不可导通裂纹的电位移强度因子要小许多.  相似文献   

10.
在压电介质断裂力学分析中,人们常假定裂纹面上的电位移法向分量为零,可是实验表明,这一假设将导致错误的结果。本文基于精确的电边界条件,并应用Stroh公式的方法,导出了含裂纹压电介质在无限远处均匀外载作用下二维问题的精确解。结果表明:(ⅰ)应力强度因子与各向同性材料相同,而电位移强度因子取决于材料常数和机械载荷,但与电载荷无关;(ⅱ)能量释放率大于纯弹性各向异性材料内的值,即总是正的,且与电载荷无关;(ⅲ)裂纹内所含空气的介电常数对介质内的场强无影响。  相似文献   

11.
采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.  相似文献   

12.
This work investigates the bending of a simply supported functionally graded piezoelectric plate under an in-plane magnetic field. The extended sinusoidal plate theory for piezoelectric plate is adopted. The governing equations are derived by the principle of the virtual work considering the Lorentz magnetic force obtained from the Maxwell's relation. The effect of magnetic field, electric loading and gradient index on the displacement, electric potential, stress and electric displacement are numerically presented and discussed in detail. These conclusions will be of particular interest to the future analysis of piezoelectric plate in magnetic field.  相似文献   

13.
An analytical method is presented to study the non-linear buckling characteristic of rectangular local delamination near the surface of fiber-reinforced piezoelectric lamination shells under coupled mechanical and electric loads. The stacking sequence of fiber reinforced lamination shells with piezoelectric layers is considered as symmetry, but the stacking sequence of rectangular local delamination sub-shells is arbitrary. Based on the nonlinear displacement mode of delaminated sub-shells, the effects of electric fields, the geometrical, physical parameters and stacking sequences of piezoelectric laminated shells on the non-linear local buckling for rectangular delamination near the surface of piezoelectric laminated base-shells are solved.  相似文献   

14.
Based on initial nonlinear constitutive equations, we establish the extended displacement and traction boundary integral equations for a piezoelectric medium with a volume electric charge, along with electron and electric current density boundary integral equations for a conductor with a volume electric current. Then, an iterative approach is proposed for investigation of boundary value problems in two-dimensional piezoelectric semiconductors (PSCs). Compared with extended displacements obtained by finite element analysis, this approach is validated via a rectangular PSC under extended external loads. Furthermore, as a numerical example, extended displacements across an elliptical hole in a rectangular PSC are investigated. It is shown that there is a stress concentration near the elliptical hole, which is closely dependent on its shape.  相似文献   

15.
This paper presents the theoretical analysis of a multilayered magneto-electro-thermoelastic hollow sphere under unsteady and uniform surface heating. We obtain the exact solution of the transient thermal stress problem of the multilayered magneto-electro-thermoelastic hollow sphere in the spherically symmetric state. As an illustration, we perform numerical calculations of a two-layered composite hollow sphere made of piezoelectric and magnetostrictive materials and investigate the numerical results for temperature change, displacement, stress, and electric and magnetic potential distributions in the transient state are shown in figures.  相似文献   

16.
Electrostrictive stresses near crack-like flaws   总被引:7,自引:0,他引:7  
Slit cracks in purely dielectric material systems do not perturb any applied uniform electric field. Furthermore, when the dielectric is unconstrained and does not support any conducting plates or mechanical loads, there are no additional mechanical stresses generated in the material upon introduction of the crack. This situation applies to both electrostrictive and piezoelectric materials. However, flaws which have finite thickness such as thin elliptical or ellipsoidal voids will cause severe inhomogeneous concentration of the electric field. In turn, this can generate substantial mechanical stress from electrostrictive or piezoelectric sources. The effect of an elliptical through flaw in an infinite isotropic body is considered. It is found that, in the case of thin ellipses, the near flaw tip mechanical stresses approximate the singular stresses near a slit crack with an equivalent stress intensity factor. In that sense, the flaw may be considered as a slit crack and treated in terms of linear elastic fracture mechanics. However, except for impermeable and conducting flaws, the value of the equivalent stress intensity factor depends on the aspect ratio of the flaw. As the aspect ratio of the flaw diminishes, the magnitude of the equivalent stress intensity factor falls and disappears in the limit of a slit crack. The results are used to show that a flaw-like crack in a material with a very high dielectric constant can be treated by fracture mechanics as an impermeable slit crack when the flaw aspect ratio is an order of magnitude greater than the ratio of dielectric permittivities (flaw value divided by the value for the surrounding material).  相似文献   

17.
利用Schmidt方法研究压电材料Ⅰ-型界面裂纹问题   总被引:1,自引:1,他引:0  
在一定的假设条件下,即不考虑界面裂纹尖端处裂纹面的相互叠入现象,研究了压电材料Ⅰ-型界面裂纹问题.利用Fourier变换使问题的求解转换为求解两对对偶积分方程.进而把裂纹表面位移差展开成Jacobi多项式形式来求解对偶积分方程.结果表明裂纹尖端应力场和电位移场的奇异性与均匀材料裂纹问题的奇异性相同.当上下半平面材料相同时,解可以退化而得到其精确解.  相似文献   

18.
研究了无穷远纵向剪切和面内电场共同作用下,压电复合材料圆形夹杂中螺型位错与界面裂纹的电弹耦合干涉作用.运用Riemann-Schwarz 对称原理,并结合复变函数奇性主部分析方法,获得了该问题的一般解答.作为典型算例,求出了界面含一条裂纹时基体和夹杂区域复势函数和电弹性场的封闭形式解.应用广义Peach-Koehler公式,导出了位错力的解析表达式.分析了裂纹几何参数和材料的电弹性常数对位错力的影响规律.结果表明,界面裂纹对位错力和位错平衡位置有很强的扰动效应,当界面裂纹长度达到临界值时,可以改变位错力的方向.该结果可以作为格林函数研究圆形夹杂内裂纹和界面裂纹的干涉效应.其公式的退化结果与已有文献完全一致.  相似文献   

19.
A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals is considered. The Fourier transform technique is used to solve a moving crack problem under the action of antiplane shear and inplane electric field. Full elastic stresses of phonon and phason fields and electric fields are derived for a crack running with constant speed in the periodic plane. Obtained results show that the coupled elastic fields inside piezoelectric quasicrystals depend on the speed of crack propagation, and exhibit the usual square-root singularity at the moving crack tip. Electric field and phason stresses do not have singularity and electric displacement and phonon stresses have the inverse square-root singularity at the crack tip for a permeable crack. The field intensity factors and energy release rates are obtained in closed form. The crack velocity does not affect the field intensity factors, but alters the dynamic energy release rate. Bifurcation angle of a moving crack in a 1D hexagonal piezoelectric quasicrystal is evaluated from the viewpoint of energy balance. Obtained results are helpful to better understanding crack advance in piezoelectric quasicrystals.  相似文献   

20.
压电材料中两平行对称可导通裂纹断裂性能分析   总被引:7,自引:4,他引:3  
周振功  王彪 《应用数学和力学》2002,23(12):1211-1219
采用Schmidt研究了压电材料中对称平行的双可导通裂纹的断裂性能,利用富里叶变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程,并采用Schmidt方法来对这两对对偶积分程进行数值求解。结果表明应力强度因子和电位移强度因子与裂纹的几何尺寸有关。与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号