首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is focused on the dynamic analysis of two collinear dielectric cracks in a piezoelectric material under the action of in-plane electromechanical impacts. Considering the dielectric permeability of crack interior, the electric displacements at the crack surfaces are governed by the jumps of electric potential and crack opening displacement across the cracks. The permeable and impermeable crack models are the limiting cases of the general one. The Laplace and Fourier transform techniques are further utilized to solve the mixed initial-boundary-value problem, and then to obtain the singular integral equations with Cauchy kernel, which are solved numerically. Dynamic intensity factors of stress, electric displacement and crack opening displacement are determined in time domain by means of a numerical inversion of the Laplace transform. Numerical results for PZT-5H are calculated to show the effects of the dielectric permeability inside the cracks, applied electric loadings and the geometry of the cracks on the fracture parameters in graphics. The observations reveal that based on the COD intensity factor, a positive electric field enhances the dynamic dielectric crack growth and a negative one impedes the dynamic dielectric crack growth in a piezoelectric solid.  相似文献   

2.
It is important to investigate the effects of heat conduction of crack interior on thermoelastic fields of a cracked material. In this paper, an extended thermal-medium crack model is proposed to address the influences of the thermal conductivity inside an opening crack on the induced thermoelastic fields. Then the problem of a penny-shaped crack in a transversely isotropic material is investigated under applied mechanical and uniform heat flow loadings. Based on the Hankel transform technique, the governing partial differential equations are transformed to ordinary differential equations, then to a system of coupled dual integral equations. The thermoelastic fields around the penny-shaped crack are obtained explicitly by solving the derived dual integral equations. Numerical results are reported to show the influences of the thermal conductivity of crack interior on partial insulation coefficient, temperature change across crack and thermal stress intensity factor. As compared to the known thermal-medium crack model, the proposed one exhibits more applicability.  相似文献   

3.
The problem of two collinear electromagnetically dielectric cracks in a magnetoelectroelastic material is investigated under in-plane electro-magneto-mechanical loadings. The semi-permeable crack-face boundary conditions are adopted to simulate the case of two collinear cracks full of a dielectric interior. Utilizing the Fourier transform technique, the boundary-value problem is reduced to solving singular integral equations with Cauchy kernel, which then are solved explicitly. The intensity factors of stress, electric displacement, magnetic induction, crack opening displacement (COD) and the energy release rates near the inner and outer crack tips are determined in closed forms for two cases of possible far-field electro-magneto-mechanical loadings respectively. Numerical results for a BaTiO3–CoFe2O4 composite are carried out to show the effects of applied mechanical loadings on the crack-face electric displacement and magnetic induction, the stress intensity factor and the COD intensity factor, respectively. The obtained results reveal that when the applied mechanical loading is stress, applied electromagnetic loadings have no influences on the stress intensity factor. When the applied mechanical loadings is train, the applied positive electromagnetic loadings decrease the intensity factors of stress and COD, and the applied negative ones increase the intensity factors of stress and COD. The variations of energy release rates are also given to show the effects of the geometry of two collinear dielectric cracks.  相似文献   

4.
An analysis solution method (ASM) is proposed for analyzing arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystal (QC) media. The extended displacement discontinuity (EDD) boundary integral equations governing three-dimensional (3D) crack problems are transferred to simplified integral-differential forms by introducing some complex quantities. The proposed ASM is based on the analogy between these EDD boundary equations for 3D planar cracks problems of 2D hexagonal QCs and those in isotropic thermoelastic materials. Mixed model crack problems under combined normal, tangential and thermal loadings are considered in 2D hexagonal QC media. By virtue of ASM, the solutions to 3D planar crack problems under various types of loadings for 2D hexagonal QCs are formulated through comparison to the corresponding solutions of isotropic thermoelastic materials which have been studied intensively and extensively. As an application, analytical solutions of a penny-shaped crack subjected uniform distributed combined loadings are obtained. Especially, the analytical solutions to a penny-shaped crack subjected to the anti-symmetric uniform thermal loading are first derived for 2D hexagonal QCs. Numerical solutions obtained by EDD boundary element method provide a way to verify the validity of the presented formulation. The influences of phonon-phason coupling effect on fracture parameters of 2D hexagonal QCs are assessed.  相似文献   

5.
We investigate asymptotic properties of solutions to mixed boundary value problems of thermopiezoelectricity (thermoelectroelasticity) for homogeneous anisotropic solids with interior cracks. Using the potential methods and theory of pseudodifferential equations on manifolds with boundary we prove the existence and uniqueness of solutions. The singularities and asymptotic behaviour of the mechanical, thermal and electric fields are analysed near the crack edges and near the curves, where the types of boundary conditions change. In particular, for some important classes of anisotropic media we derive explicit expressions for the corresponding stress singularity exponents and demonstrate their dependence on the material parameters. The questions related to the so called oscillating singularities are treated in detail as well. This research was supported by the Georgian National Science Foundation grant GNSF/ST07/3-170 and by the German Research Foundation grant DFG 436 GEO113/8/0-1.  相似文献   

6.
The problem of multiple arbitrarily oriented planar cracks in an infinite magnetoelectroelastic space under dynamic loadings is considered. An explicit solution to the problem is given in the Laplace transform domain in terms of suitable exponential Fourier integral representations. The unknown functions in the Fourier integrals are directly related to the Laplace transform of the jumps in the displacements, electric potential and magnetic potential across opposite crack faces and are to be determined by solving a system of hypersingular integral equations. Once the hypersingular integral equations are solved, the displacements, electric potential, magnetic potential and other quantities of interest such as the crack tip intensity factors may be easily computed in the Laplace transform domain and recovered in the physical space with the help of a suitable algorithm for inverting Laplace transforms.  相似文献   

7.
In the low cycle fatigue (LCF) regime, fatigue failure of metallic materials with high strength and less impurities generally dominates by multiple surface crack propagation and coalescence, in which its final failure shows a stochastic nature on crack initiation, propagation and coalescence under cyclic loadings. According to this, the competing failure modes of multiple surface cracks and interior cracks are studied through coupling numerical simulations with fracture mechanics methods. In particular, a probabilistic procedure for modeling multiple surface crack propagation and coalescence is established by incorporating Monte Carlo simulation with experimental evidences, including surface crack density and crack length distributions measured from LCF replica tests of 30NiCrMoV12 steel. In addition, it calculates the probability of coalescence of neighboring cracks with allowance for their interactions and local plastic deformation at the crack tips. Finally, it estimates the remaining usage lives of specimens from initial state to critical cracks by propagation and coalescence of dispersed cracks.  相似文献   

8.
Mechanics of Composite Materials - The purpose of this article is to determine the effect of thermal loadings on the stress intensity factor of an edge crack of finite length in an orthotropic...  相似文献   

9.
半无限平面裂纹构型横向应力的Green函数   总被引:1,自引:0,他引:1  
针对各向同性弹性无限大板中半无限裂纹,用解析函数方法求解了裂尖处横向应力的Green函数.加载情况为一任意集中力作用于任意一内点处.用叠加法求解了复势,它给出该平面问题的弹性解.通过渐近分析抽取复势的非奇异部分.基于该非奇异部分,用一种直接方法求解了横向应力的Green函数.进一步,用叠加法得到了一对对称和反对称集中力加载时的Green函数.然后,用得到的Green函数来预测铁电材料双悬臂梁试验中畴变引起的横向应力.用力电联合加载引起的横向应力来判断试验中所观察到的稳定和不稳定裂纹扩展行为.预测结果和试验数据基本吻合.  相似文献   

10.
A constant crack moving along the interface of magnetoelectroelastic and functionally graded elastic layers under anti-plane shear and in-plane electric and magnetic loading is investigated by the integral transform method. Fourier transforms are applied to reduce the mixed boundary value problem of the crack to dual integral equations, which are expressed in terms of Fredholm integral equations of the second kind. The singular stress, electric displacement and magnetic induction near the crack tip are obtained asymptotically and the corresponding field intensity factors are defined. Numerical results show that the stress intensity factors are influenced by the crack moving velocity, the material properties, the functionally graded parameter and the geometric size ratios. The propagation of the moving crack may bring about crack kinking, depending on the crack moving velocity and the material properties across the interface.  相似文献   

11.
带裂纹三点弯曲试样的动态应力强度因子分析   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了计算带单边裂纹三点弯曲试样动态应力强度因子的新方法.首先由权函数的普遍形式和两种参考载荷下的应力强度因子,得到了带单边裂纹三点弯曲试样的权函数,然后考虑试样的转动惯性和剪切变形,根据振动理论推导出无裂纹梁内的动应力响应和分布,最后由权函数的思想推导出了带裂纹三点弯曲试样动态应力强度因子公式.通过有限元数值计算,验证了该方法的正确性,结果比较表明公式具有较高的精度.另外,还研究了冲击载荷下三点弯曲试样的动态应力强度因子随裂纹长度和加载速率的变化规律.  相似文献   

12.
A bimaterial containing an interface crack and consisting of a homogeneous material and a functionally graded material (FGM) with a system of small internal cracks is considered. The thermal fracture of the biomaterial under the action of a heat flux applied to it at infinity is investigated. The problem is studied in the case where the interface crack is much larger than the internal ones. It is assumed that the thermal properties of the FGM are continuous functions of the thickness coordinate. Asymptotic analytical formulas for the thermal stress intensity factors (TSIFs) at the tips of the interface crack are obtained as series in a small parameter (the ratio between sizes of the internal and interface cracks). Then, the critical heat fluxes and the angles of propagation direction of the interface crack are calculated using the criterion of maximum circumferential stress. A parametric analysis shows that the propagation direction of the interface crack depends on the location and orientation of the system of internal cracks. The parameters of inhomogeneity of the FGM affect the value of TSIFs and, hence, the deflection angle of the interface crack.  相似文献   

13.
在压电介质断裂力学分析中,人们常假定裂纹面上的电位移法向分量为零,可是实验表明,这一假设将导致错误的结果。本文基于精确的电边界条件,并应用Stroh公式的方法,导出了含裂纹压电介质在无限远处均匀外载作用下二维问题的精确解。结果表明:(ⅰ)应力强度因子与各向同性材料相同,而电位移强度因子取决于材料常数和机械载荷,但与电载荷无关;(ⅱ)能量释放率大于纯弹性各向异性材料内的值,即总是正的,且与电载荷无关;(ⅲ)裂纹内所含空气的介电常数对介质内的场强无影响。  相似文献   

14.
We consider time-harmonic electromagnetic waves propagating in a homogeneous three-dimensional unbounded chiral medium where a perfect conductor has been immersed. Assuming that the incident electric field is a superposition of plane incident electric waves, the corresponding scattered field and the far-field pattern are expressed as the superposition of the scattered fields and the far-field patterns respectively. It is also proved that the sets of far-field patterns are complete if and only if there does not exist an eigenfunction to the interior perfect conductor problem that vanishes on the boundary of the scatterer which is an electric Herglotz field. The Left-Circularly Polarized and the Right-Circularly Polarized far-field operators are defined and studied and using them the electric far-field operator is defined too. The properties of the above operators and Herglotz functions are related to the solution of the interior perfect conductor boundary value problem.  相似文献   

15.
This paper is concerned with the rigorous determination of the stress intensity factors of an arbitrary located and oriented angled crack in discs using the finite element method. Three different loading conditions are examined: boundary loadings resulting from disc attachments and/or interference fit with a rotating shaft, body forces resulting from rotation at a constant angular velocity and thermal stresses associated with a quadratic radial temperature distribution. Three techniques are adopted in the evaluation of the resulting mixed-mode stress intensity factors: direct extrapolation methods, virtual crack extension and J-integral method. Verification with available referenced solutions for the simple case of a radial crack is provided and merits and limitations associated with the above three methods are discussed.  相似文献   

16.
Stress intensity factor and stress distribution at crack tips are classical problems in solids, which are closely related to the failure and reliability of materials. A crack in a nonlinearly coupled anisotropic medium, on the other hand, is much more difficult to analyze. Using the generalized complex variable method, the thermal stress problem of a crack embedded in an orthotropic medium has been analyzed, and the progressive thermal stress distributions have been obtained in closed-forms. The analysis shows that the thermal stress intensity factors are linear functions of remote thermal flux while are nonlinear functions of remote current; the thermal stress distributions under produced by thermal flux and Joule heating are similar, but not identical; the thermal stress intensity factors are linear functions with respect to the thermal expansion coefficients; with the increase of crack length, the thermal stress intensity factor caused by Joule heat increases rapidly; the thermal stress intensity factors are directly proportional to the temperature difference between the upper and lower crack surfaces and the left and right half crack surfaces divided by the square root of the crack length, and the ratios are only determined by the material parameters. These results provide a powerful tool for the failure and reliability analysis of conductive materials, and suggested that thermal stress analysis may be localized.  相似文献   

17.
为求解金属模具脉冲放电止裂瞬间裂纹尖端附近的热应力场,选择具有半埋藏环形裂纹的金属凹模为研究对象,采用复变函数方法求解了凹模内外环面均匀通入强脉冲电流放电止裂时的热应力场.理论分析结果证实:由于放电瞬间脉冲电流的绕流集中效应,使金属凹模内部环形裂纹尖端附近金属迅速升温,金属熔化形成堆焊,并由于瞬间温升产生热压应力场.研究结果表明:应用电磁热效应止裂技术可以减小裂纹尖端的应力集中,形成的热压应力场有效地阻止金属模具中干线裂纹源的开裂趋势,达到了裂纹止裂目的.  相似文献   

18.
The multi-scale analysis of fracture toughness of ferroelectric ceramics under complicate mechanical–electrical coupling effect is carried out in this paper. The generalized stress intensity factor (SIF) arising from spontaneous strains and polarization transformation in switching domain zones is accurately obtained by using an extended Eshelby theory. Taking BaTiO3 ferroelectric ceramic for example, it is discovered that the crack propagation can be induced by domain switching arising from negative electrical field when the crack surface is parallel to the isotropic plane, and the obtained critical electric displacement intensity factor (EDIF) approximates closely to that obtained by the Green’s function method. Additionally, as pinning dislocations and slip dislocations can strongly influence properties of ferroelectric devices and induce the property degradation, it is necessary to investigate the dislocation toughening effects on fatigue and fracture mechanisms. The results show that the dislocation shielding and anti-shielding effects on mode II SIF, mode I SIF and EDIF are obviously different when a dislocation locates at a position near the crack tip. Through the calculation of the critical applied EDIF for crack propagation by using mechanical energy release rate (MERR) theory, it is discovered that the slip angles obviously influence fracture toughness, and the mode II SIF arising from dislocation has little influence on fracture toughness, however, the mode I SIF and EDIF arising from dislocation have great influences on fracture toughness.  相似文献   

19.
Mikhail Perelmuter 《PAMM》2007,7(1):4030033-4030034
The direct boundary element method is used to analyze of the stress-strain state and fracture parameters of fiber-reinforced layered composites structures with interface bridged cracks under transient thermal and mechanical loadings. It is supposed that unbroken fibers make up bridged zone along of whole or part of a delamination region between layers of composite materials. For modeling purposes the bridged zone is considered as a part of the interface crack between of joined materials and supposed that distributed nonlinear spring-like bonds link and constrain the crack surfaces. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A strip-saturation model is proposed for a transversely isotropic piezoelectric plane weakened by two collinear equal cracks, when developed saturation zones at the interior tips of the cracks get coalesced. The plane is subjected to unidirectional, normal (to the crack length) in-plane tension and electric displacement. The developed saturation zones are arrested by distributing over their rims the normal, cohesive, unidirectional saturation-limit electrical displacement. The solution is obtained using Stroh formulation and complex variable technique. Closed form expressions are derived for crack opening displacement (COD), crack potential drop (COP), field intensity factors, length of saturation zone, energy release rate. Case study carried out for PZT-4 to show the effects of inter-crack distance on the stress intensity factor. The variations of energy release rates are plotted for PZT-4, PZT-5H and BaTiO3 to study the effects of the geometry of the two cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号