首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two-dimensional numerical simulations of particle-driven gravity currents in a lock-exchange configuration. The fluid is described in an Eulerian framework, whereas the particles are tracked in a Lagrangian manner. The study is restricted to dilute suspensions, allowing to neglect particle-particle interactions. The particle forces considered are buoyancy and the Stokes drag. We study the influence of particle inertia on the flow evolution by performing simulations with different Stokes numbers. We also consider the case where particle inertia is neglected. Generally, we observe significant changes in the form and structure of the gravity current with increasing particle Stokes numbers. Particularly, the formation of Kelvin-Helmholtz vortices is more and more suppressed. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A CFD code in the framework of OpenFOAM was validated for simulations of particle-laden pipe and channel flows at low to intermediate mass loadings. The code is based on an Eulerian two-fluid approach with Reynolds-averaged conservation equations, including turbulence modeling and four-way coupling. Pipe flow simulations of particles in air against gravity were conducted at Reynolds numbers up to 50000. The particle mass loading was varied and its effect on the mean velocities and turbulent fluctuations of the two phases was studied. Special attention was paid to the influence of mass loading on the centerline velocity and the wall shear velocity of the fluid phase for various flow parameters and particle properties. Empirical correlations were established between these two quantities and the flow Reynolds number, particle Reynolds number, Stokes number and particle to fluid density ratio for a range of particle mass loadings. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper is a report on a joint project between academia and industry which is concerned with computation of dilute two-phase flow through a pump in turbulent condition. The flow field for the continuous phase is computed using the Reynolds averaged Navier–Stokes equations together with mixing length turbulence modeling. The dispersed phase is treated using the Lagrangian approach by tracking it's trajectory along which the information is passed. It is found that the bubbles and small solid particles flow out of the chamber (between the rotating impeller and the casing wall) with the conveying fluid. The solid particles of relatively bigger sizes accumulate at the low pressure zones near the cashing wall or the rotating shaft.  相似文献   

4.
两相流中柱状固粒对流体湍动特性影响的研究   总被引:7,自引:2,他引:5  
对含柱状固粒的两相流场,建立了包含柱状固粒对流场影响的流体脉动速度方程,在求解脉动速度方程的基础上,经平均得到流体的湍流强度和雷诺应力.将该方法用于槽流湍流场的求解,并与单相流实验结果进行了比较.计算中变化柱状固粒的参数,给出了固粒的体积分数、长径比、松驰时间对流场湍动特性的影响,说明粒子对流场的湍动特性起着抑制作用,其抑制的程度与粒子的体积分数、长径比成正比,与粒子的松弛时间成反比.  相似文献   

5.
Inertial particle transfer in a turbulent plane Couette flow (C flow) was studied using Direct Numerical Simulation (DNS) of the flow combined with a Lagrangian particle tracking approach for particles with Stokes numbers (St) 5, 25 and 125. The particle concentration was assumed low enough, so that the simulations were done under one-way coupling condition.  相似文献   

6.
To predict particulate two-phase flows, two approaches are possible. One treats the fluid phase as a continuum and the particulate second phase as single particles. This approach, which predicts the particle trajectories in the fluid phase as a result of forces acting on particles, is called the Lagrangian approach. Treating the solid as some kind of continuum, and solving the appropriate continuum equations for the fluid and particle phases, is referred to as the Eulerian approach.Both approaches are discussed and their basic equations for the particle and fluid phases as well as their numerical treatment are presented. Particular attention is given to the interactions between both phases and their mathematical formulations. The resulting computer codes are discussed.The following cases are presented in detail: vertical pipe flow with various particle concentrations; and sudden expansion in a vertical pipe flow. The results show good agreement between both types of approach.The Lagrangian approach has some advantages for predicting those particulate flows in which large particle accelerations occur. It can also handle particulate two-phase flows consisting of polydispersed particle size distributions. The Eulerian approach seems to have advantages in all flow cases where high particle concentrations occur and where the high void fraction of the flow becomes a dominating flow controlling parameter.  相似文献   

7.
Free two-phase flows occur in many practical applications, such as sprays or particle drying and combustion. This paper deals with mathematical modelling of a free turbulent two-phase jet. A steady, axisymmetric, dilute, monodisperse, particle-laden, turbulent jet injected into a still environment, has been considered. The model treats the gas-phase from an Eulerian standpoint and the motion of particles from a Lagrangian one. Closure of the system of time averaged transport equations has been accomplished by using a Reynolds-stress turbulence model. The particles–fluid interaction has been considered by the PSI-Cell concept. Both the effect of interphase slip and the effect of particle dispersion have been taken into account.  相似文献   

8.
液固两相圆柱绕流尾迹内颗粒扩散分布的离散涡数值研究   总被引:1,自引:0,他引:1  
基于离散涡方法求得的非定常水流场和颗粒的Lagrange运动方程,数值模拟了稀疏液固两相圆柱绕流尾迹内颗粒的扩散分布.获得了流动的涡谱与3种不同St数颗粒(St=0.25,1.0,40)在流场中的分布.通过引入扩散函数来定量表示颗粒在流场中的纵向扩散强度,并计算得到了不同St数颗粒的扩散函数随时间的变化.数值结果揭示出了液固两相圆柱绕流尾迹中的颗粒扩散分布与颗粒的St数和尾涡结构密切相关:1) 中小St数(St=0.25~4.0)颗粒在运动过程中不能进入涡核区,而在旋涡结构的外沿聚集,且颗粒的St数愈大,其越远离涡核区域;2) 在圆柱绕流尾迹区域内,中小St数(St=0.25~4.0)颗粒的纵向扩散强度随其St数的增大而减小.  相似文献   

9.
A. Kubik  L. Kleiser 《PAMM》2005,5(1):597-598
The behavior of particle-laden gases in a turbulent channel flow is studied at moderate Reynolds number. Effects of the wallparticle interaction models on the velocity, statistics, and dispersion of the particles are presented. The results were obtained from a direct numerical simulation with particle feedback on the gas phase. The models were found to considerably influence the studied particle properties. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, we present a Lagrangian stochastic model for heavy particle dispersion in turbulence. The model includes the equation of motion for a heavy particle and a stochastic approach to predicting the velocity of fluid elements along the heavy particle trajectory. The trajectory crossing effect of heavy particles is described by using an Ito type stochastic differential equation combined with a fractional Langevin equation. The comparison of the predicted dispersion of four heavy particles with the observations shows that the model is potentially useful but requires further development.  相似文献   

11.
A. Kubik  L. Kleiser 《PAMM》2004,4(1):512-514
Trajectories of solid particles in laminar and turbulent flow over a backward‐facing step (BFS) were numerically computed by integrating the equation of motion for particles. The various forces acting on the particles [5],[6] were calculated for a variety of flow Reynolds numbers and for different particle characteristics such as the Stokes number and the particle‐to‐fluid density ratio. The investigation was conducted for the distinct flow regimes of the BFS flow separately. Generally, the drag and gravitation were found to be the most significant forces. The lift and history force were the next most important, mostly two orders of magnitude smaller, but in some cases closing up to the other two in importance. The pressure and virtual mass effects were very small for the majority of cases. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The aim of this work is to analyze the efficiency of a snow fence with airfoil snow plates to avoid the snowdrift formation, to improve visibility and to prevent blowing snow disasters on highways and railways. In order to attain this objective, it is necessary to solve particle transport equations along with the turbulent fluid flow equations since there are two phases: solid phase (snow particles) and fluid phase (air). In the first place, the turbulent flow is modelled by solving the Reynolds-averaged Navier-Stokes (RANS) equations for incompressible viscous flows through the finite volume method (FVM) and then, once the flow velocity field has been determined, representative particles are tracked using the Lagrangian approach. Within the particle transport models, we have used a particle transport model termed as Lagrangian particle tracking model, where particulates are tracked through the flow in a Lagrangian way. The full particulate phase is modelled by just a sample of about 15,000 individual particles. The tracking is carried out by forming a set of ordinary differential equations in time for each particle, consisting of equations for position and velocity. These equations are then integrated using a simple integration method to calculate the behaviour of the particles as they traverse the flow domain. Finally, the conclusions of this work are exposed.  相似文献   

13.
We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-induced turbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer). The analysis is based on the asymptotic behavior at a large Reynolds number. We use the Lagrangian Kolmogorov theory, recently derived asymptotic expressions for the spatial distribution of turbulent energy dissipation, and also newly derived reciprocity relations analogous to the Onsager relations supplemented with recent measurement results. The long-time limit of the derived Langevin equation yields the diffusion equation for admixture dispersion in wall-induced turbulence.  相似文献   

14.
In this paper, the problem of the numerical approximation of a two-dimensional incompressible viscous fluid flow interacting with a flexible structure is considered. Due to high Reynolds numbers in the range 104 − 106 the turbulent character of the flow is considered and modelled with the aid of Reynolds equations coupled with the k − ω turbulence model. The structure motion is described by a system of ordinary differential equations for three degrees of freedom: vertical displacement, rotation and rotation of the aileron. The problem is discretized in space by the Galerkin Least-Squares stabilized finite element method and the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian method.  相似文献   

15.
Turbulent particle dispersion in an electrostatic precipitator   总被引:8,自引:0,他引:8  
The behaviour of charged particles in turbulent gas flow in electrostatic precipitators (ESPs) is crucial information to optimise precipitator efficiency. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during ESP taking into account the statistical particle size distribution. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.  相似文献   

16.
Lagrangian and Eulerian modelling approaches are compared for simulating turbulent dispersion and coalescence of droplets within a spray. Both models predict similar droplet dispersion rates and shifts in droplet size distribution due to coalescence within the spray, over a wide range of droplet and gas flows, and for sprays with different droplet-size distributions at the nozzle exit. The computer time required for simulating coalescence within a steady axisymmetric spray is of a similar order of magnitude regardless of which formulation, Eulerian or Lagrangian, is adopted. However, the Lagrangian formulation is more practical in terms of the range of applicability and ease of implementation.  相似文献   

17.
The aim of this work is to analyze the efficiency of a new sustainable urban gravity settler to avoid the solid particle transport, to improve the water waste quality and to prevent pollution problems due to rain water harvesting in areas with no drainage pavement. In order to get this objective, it is necessary to solve particle transport equations along with the turbulent fluid flow equations since there are two phases: solid phase (sand particles) and fluid phase (water). In the first place, the turbulent flow is modelled by solving the Reynolds-averaged Navier-Stokes (RANS) equations for incompressible viscous flows through the finite volume method (FVM) and then, once the flow velocity field has been determined, representative particles are tracked using the Lagrangian approach. Within the particle transport models, a particle transport model termed as Lagrangian particle tracking model is used, where particulates are tracked through the flow in a Lagrangian way. The full particulate phase is modelled by just a sample of about 2,000 individual particles. The tracking is carried out by forming a set of ordinary differential equations in time for each particle, consisting of equations for position and velocity. These equations are then integrated using a simple integration method to calculate the behaviour of the particles as they traverse the flow domain. The entire FVM model is built and the design of experiments (DOE) method was used to limit the number of simulations required, saving on the computational time significantly needed to arrive at the optimum configuration of the settler. Finally, conclusions of this work are exposed.  相似文献   

18.
A new second-order asymptotic solution that describes short-crested waves is derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid satisfies the irrotational condition and there being zero pressure at the free surface, in contrast with the Eulerian solution, in which there is residual pressure at the free surface. The explicit parametric solution highlights the trajectory of a water particle and the wave kinematics above the mean water level. The mass transport velocity and Lagrangian mean level associated with particle displacement can also be obtained directly. In particular, the mean level of the particle motion in a Lagrangian form differs that of the Eulerian form. The new formulation reduces to second-order standing or progressive wave solutions in Lagrangian coordinates at the limiting angles of approach. Expressions for kinematic quantities are also presented.  相似文献   

19.
本文指出固体颗粒对流体湍流运动的响应有不同的机理,颗粒受大涡的粘性拖动,但受小涡的随机碰撞.基于这种原理,本文计算了有限尺寸的固体颗粒在均匀各向同性湍流中的扩散.结果显示存在着二种相互抵消的效应:颗粒的惯性使颗粒长期扩散系数上升,而颗粒尺寸使颗粒的长期扩散系数下降.  相似文献   

20.
Fractals are objects which have similar appearances when viewed at different scales. Such objects have details at arbitrarily small scales, making them too complex to be represented by Euclidian space; hence, they are assigned a non-integer dimension. Some natural phenomena have been modeled as fractals with success; examples include geologic deposits, topographic surfaces and seismic activities. In particular, time series have been represented as a curve with fractal dimensions between one and two. There are different ways to define fractal dimension, most being equivalent in the continuous domain. However, when applied in practice to discrete data sets, different ways lead to different results. In this study, three methods for estimating fractal dimension are described and two standard algorithms, Hurst’s rescaled range analysis and box-counting method (BC), are compared with the recently introduced variation method (VM). It was confirmed that the last method offers a superior efficiency and accuracy, and hence may be recommended for fractal dimension calculations for time series data. All methods were applied to the measured temporal variation of velocity components in turbulent flows in an open channel in Shiraz University laboratory. The analyses were applied to 2500 measurements at different Reynold’s numbers and it was concluded that a certain degree of randomness may be associated with the velocity in all directions which is a unique character of the flow independent of the Reynold’s number. Results also suggest that the rigid lateral confinement of flow to the fixed channel width allows for designation of a more-or-less constant fractal dimension for the spanwise velocity component. On the contrary, in vertical and streamwise directions more freedom of movements for fluid particles sets more room for variation in fractal dimension at different Reynold’s numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号