首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Low-energy 120 and 150 keV H+ was implanted in z-cut LiNbO3 at room temperature. The fluence of H+ is 5?×?1016 ions/cm2. The damage profiles in LiNbO3 induced by implantation were investigated using Rutherford backscattering/channelling. The damage profiles were extracted using the channelling results. The experimental damage profiles in LiNbO3 were analyzed and compared to the simulated results from TRIM. The results show a good consistency between experimental and simulated results. The present results are useful for the fabrication of H-implanted waveguides of oxide crystals, especially LiNbO3.  相似文献   

2.
A z-cut magnesium-doped LiNbO3 is implanted by O2+ at 1.5–4.5 MeV and with doses of 4–12 × 1014 ions/cm2 at room temperature. Planar optical waveguides were obtained and characterized by the prismcoupling technique at wavelength of 633 and 1539 nm. Implanted samples were annealed at different temperatures and time durations. After different annealing treatments, mode profiles and optical losses were measured and analyzed.  相似文献   

3.
A novel ion exchanged channel KTiOPO4 waveguide formation technique is introduced, which can avoid a metal mask being dissolved in an ion exchanged molten salt. Rb+ ion exchange (340°C, 30 min) was first applied to a KTP sample to produce a planar waveguide substrate, and then Si+ ion implantation (3.0 MeV and 1.5 MeV with doses of 1×1015 ions/cm2 and 6×1014 ions/cm2, respectively) was carried out to construct channel stripes on the planar waveguide surface that has been deposited by a specially designed photoresist mask. The two-dimensional cross sectional refractive index profile of the channel waveguide was reconstructed by considering the shape of the channel waveguide as well as the index distribution of the planar waveguide.  相似文献   

4.
We report on the formation of the planar waveguide by 550 keV O ion followed by 250 keV O ion implantation in lithium niobate (LiNbO3), at fluences of 6 × 1014 ions/cm2 and 3 × 1014 ions/cm2, respectively. The Rutherford backscattering/channeling spectra have shown the atomic displacements in the damage region before and after annealing. A broad and nearly homogeneous damage layer has been formed by double-energy ion implantation after annealing. Both the dark mode spectra and the data of refractive index profile verified that the extraordinary refractive index was enhanced in the ion implanted region of LiNbO3. A homogeneous near-field intensity profile was obtained by double-low-energy ion implantation. There is a reasonable agreement between the simulated modal intensity profile and the experimental data. The estimated propagation loss is about 0.5 dB/cm.  相似文献   

5.
Si crystals were implanted with 2.0- MeV Er+ at the doses of 5×1012 ions/cm2, 1×1014 ions/cm2, 5×1014ions/cm2, 1×1015 ions/cm2 and 2.5×1015 ions/cm2. Conventional furnace thermal annealing was carried out in the temperature range from 600 °C to 1150 °C. The depth distribution of Er, associated damage profiles and annealing behavioar were investigated using the Rutherford backscattering spectrometry and channelling (RBS/C) technique. A proper convolution program was used to extract the distribution of Er from the experimental RBS spectrum. The obtained distribution parameters, projected range Rp, projected range straggling ΔRp and skewness SK were compared with those of TRIM96 calculation.The experimental Rp and SK values agree well with the simulated values, while the experimental ΔRp is larger than TRIM 96 simulated value by a factor of 18%. The damage profile of silicon crystal induced by 2.0-MeV Er+ at a dose of 1×1014 ions/cm2 was extracted using the multiple-scattering dechannelling model based on Feldman’s method, which is in a good agreement with the TRIM96 calculation. For the samples with dose of 5×1014 ions/cm2 and more, an abnormal annealing behavioar was found and a qualitative explaination has been given. Received: 11 October 1999 / Accepted: 28 March 2000 / Published online: 5 July 2000  相似文献   

6.
The annealing behaviour of 400 keV Er ions at a fluence of 2×1015 cm-2 implanted into silicon-on-insulator(SOI) samples is investigated by Rutherford backscattering spectrometry of 2.1 MeV He2+ ions with a multiple scattering model.It is found that the damage close to the SOI surface is almost removed after being annealed in O2 and N2 atmospheres,successively,at ℃,and that only a small number of the Er atoms segregated to the surface of the SOI sample,whereas a large number of Er atoms diffused to a deeper position because of the affinity of Er for oxygen.For the SOI sample co-implanted with Er and O ions,there is no evident outdiffusion of Er atoms to the SOI surface after being annealed in N2 atmosphere at ℃.  相似文献   

7.
G. L. Du  G. Q. Li  S. Z. Zhao  T. Li  X. Li 《Laser Physics》2010,20(1):209-211
This work, for the first time to our knowledge, reports continuous-wave laser oscillation at 1.06 μm in Nd:YVO4 planar waveguide formed by 3.0 MeV Si+ ion implantation at a dose of 1 × 1015 ions/cm2 at room temperature. The effective refractive indices of the waveguide propagation modes were measured by using a prism-coupling method after the annealing at 240°C for 60 min in air. The performance of the waveguide laser has been studied in terms of the threshold pump power and slope efficiency. The laser outputs show a very high stability operating in cw regime at room temperature.  相似文献   

8.
We report on the fabrication and characterization of planar and channel waveguides in KTiOPO4 crystals by 6.0 MeV C3+ ion implantation with the dose of 1×1014 ions/cm2. The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. An increase of the both n x and n y refractive indices induced by the annealing after implantation is believed to be responsible for waveguide formation. The bright near-field intensity distribution of the transverse-electric and transverse-magnetic modes in the annealed channel waveguide was collected and studied by end-coupling method.  相似文献   

9.
Backscattering yields of 1.5 MeV?He+ ions and low temperature photoluminescence (PL) spectra were measured in GaP crystals implanted with 200 keV?N+ ions as functions of ion-dose, temperature during implantation and annealing temperature after implantation. Backscattering results indicate that hot implantation at 500°C greatly reduces radiation damage. The PL intensities of NN lines become maximum in the sample implanted with N+ ions of 3 × 1014cm?2 at 500°C, and annealed at 1000°C for 1 hr with aluminum glass. The PL intensity is comparable to that of the nitrogen-doped sample during liquid phase epitaxy which is widely accepted as the best method of introducing nitrogen into GaP crystals. In the case of 500°C—hot implantation, the radiation damage produced during implantation is annealed out at 700 ~ 800°C and the implanted nitrogen substitutes for the phosphorous sites after annealing at 900 ~ 1000°C. Some kinds of defects or strains remain around the NN centers even in implanted samples with a maximum PL efficiency. These defects or strains don't seem to reduce the PL efficiency. In the case of room temperature implantation, PL efficiency decreases to one-hundredth or one-thousandth due to the formation of the non-crystalline state compared with hot implantation.  相似文献   

10.
Raman study on vapor-phase equilibrated Er:LiNbO3 and Er:Ti:LiNbO3 crystals   总被引:2,自引:0,他引:2  
Raman spectra of Er:LiNbO3 crystal and Ti-diffusedEr:LiNbO3 strip waveguide, in which the Li/Nb ratio was altered using a vapor-phase equilibration (VPE) technique, were measured at room temperature in the wave-number range 50–3500 cm-1. Both 488 and 514.5 nm radiations were used to excite Raman scattering, A1(TO) and E(TO) modes were recorded at backward scattering geometry. The results indicated that the lattice vibrational spectra of the as-grown Er:LiNbO3 are almost the same as those of pure LiNbO3 except for the little shift of the peak position and the change of relative intensity of some peaks. In comparison with the spectra of as-grown Er:LiNbO3 crystal the vapor-phase equilibrated Er:LiNbO3 and Er:Ti:LiNbO3 crystals in the lattice vibrational region exhibit the following features: firstly, Raman peaks become narrow, indicating that the VPE process has brought Er:LiNbO3 and Er:Ti:LiNbO3 crystals closer to a stoichiometric composition; secondly, relative intensity of some peaks varies with the VPE time; and finally, slight blue shifting in peak position was observed. Some of these features were correlated with the NbO6 octahedra and with the site distribution of the doped Er ions. In addition, green fluorescence peaks and/or bands associated with the electron transitions 2 H 11/2?4 I 15/2 and 4 S 3/2?4 I 15/2 of the doped Er3+ were also observed. For 488 nm excitation they appear in the wavenumber range of 1200–3000 cm-1 and are well separated from lattice vibrational region; for 514.5 nm excitation, however, these fluorescence peaks shift towards the low wavenumber region and overlap partially with the lattice vibrational spectra. Received: 24 May 2000 / Accepted: 29 May 2000 / Published online: 13 September 2000  相似文献   

11.
Crystals of lithium niobate LiNbO3 are implanted with 60-keV Cu? ions at different ion fluxes to a fluence of 2 × 1017 ions/cm2. The structure and the linear and nonlinear optical properties of the implanted layers are investigated. The optical transmission and ion-induced photon spectra of the LiNbO3 crystals are measured in the course of implantation. It is revealed that the implantation brings about the formation of complex nanocomposites consisting of metallic copper nanoparticles and nanodomains of the matrix. The distributions of nanoparticles and nanodomains in the implanted layers do not correlate with each other. It is shown that the variations in the linear and nonlinear optical absorption of the nanocomposites are predominantly determined by the changes in the chemical composition and the structure of the matrix.  相似文献   

12.
秦希峰  梁毅  王凤翔  李双  付刚  季艳菊 《物理学报》2011,60(6):66101-066101
用300—500 keV能量的铒(Er)离子注入碳化硅(6H-SiC)晶体中,利用卢瑟福背散射技术研究了剂量为5×1015 cm-2 的Er离子注入6H-SiC晶体的平均投影射程Rp和射程离散ΔRp,将测出的实验值和TRIM软件得到的理论模拟值进行了比较,发现Rp的实验值与理论值符合较好,ΔRp的实验值和理论值差别大一些 关键词: 离子注入 投影射程和射程离散 退火行为 卢瑟福背散射技术  相似文献   

13.
Nitrogen ions were implanted in GaAs1−xPx (x=0.4; 0.65) at room temperature at various doses from 5×1012 cm−2 to 5×1015 cm−2 and annealed at temperatures from 600°C up to 950°C using a sputtered SiO2 encapsulation to investigate the possibility of creating isoelectronic traps by ion implantation. Photoluminescence and channeling measurements were performed to characterize implanted layers. The effects of damage induced by optically inactive neon ion implantation on photoluminescence spectrum were also investigated. By channeling measurements it was found that damage induced by nitrogen implantation is removed by annealing at 800°C. A nitrogen induced emission intensity comparable to the intensity of band gap emission for unimplanted material was observed for implanted GaAs0.6P0.4 after annealing at 850°C, while an enhancement of the emission intensity by a factor of 180 as compared with an unimplanted material was observed for implanted GaAs0.35P0.65 after annealing at 950°C. An anomalous diffusion of nitrogen atoms was found for implanted GaAs0.6P0.4 after annealing at and above 900°C.  相似文献   

14.
Abstract

Ion implantation in LiNbO3 can be used to modify the refractive index. The change in indices, n 0 n e results from the damage formed by energy deposited by the (dE/dx)nuclear collisions between the ions and the lattice and is independent of the ion species. A saturation change in index of some ?7% occurs after a deposition of 1023 keV cm?3 at 300K, greater changes of ?9 % occur with implants at 77K. Annealing studies indicate the optical absorption formed during irradiation is removed below 200°C whereas the index changes exist up to 400°C. For optical waveguide production a negative change in the index is not ideal as the damaged layer cannot directly act as the region of optical confinement. However the (dE/dx)electronic term is unimportant and so we have been able to form optical waveguides by ion implantation with light energetic ions (e.g. MeV He+ ions) because the damaged layer is then formed beneath an unchanged high index surface layer. This retains the desirable electrooptic properties of the single crystal LiNbO3. The experimentally observed waveguide modes are in accord with our theoretical predictions of the refractive index profiles.  相似文献   

15.
The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375C. Possible loss mechanisms are discussed.  相似文献   

16.
Optical channel waveguides in Nd3+:MgO:LiNbO3 crystals are produced by using implantation of 500 keV protons at dose of 6×1016 ions/cm2 with a stripe photoresist mask. With thermal annealing treatment at 400°C for 60 min, the propagation losses of the waveguides could be reduced down to ∼4 dB/cm at wavelength of 632.8 nm. The calculated modal profiles are in fairly good agreement with the experimental near-field intensity distributions of the waveguide modes. The microluminescence investigation indicates the emission intensity of Nd3+ ions is only slightly modified with respect to the bulk, exhibiting potentials for laser applications.  相似文献   

17.
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol–gel method was investigated. These BFO samples were implanted by 15.8?MeV ions of Au5+ at various ion fluence ranging from 1?×?1014 to 5?×?1015?ions/cm2. Effect of Au5+ ions’ implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds’ formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8?MeV Au5+ ions at a fluence of 5?×?1015?ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8?MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.  相似文献   

18.
Work is described in which chromium-doped semi-insulating gallium arsenide has been successfully doped n-type with ion implanted silicon and sulfur, and p-type with ion implanted carbon. A dilute chemical etch has been employed in conjunction with differential Hall effect measurements to obtain accurate profiles of carrier concentration and mobility vs. depth in conductive implanted layers. This method has so far been applied to silicon-and sulfur-implanted layers in both Cr-doped semi-insulating GaAs and high purity vapor grown GaAs. In the case of sulfur implants, a strong diffusion enhancement has been observed during the annealing, presumably due to fast-diffusing, implantation-produced damage. Peak doping levels so far obtained are about 8 × 1017 electrons/cm3 for silicon implants and 2 × 1017 electrons/cm3 for sulfur implants. Mobility recovery has been observed to be complete except in regions near the surface which are heavily damaged by the implantation.  相似文献   

19.
Transparent polycarbonate samples were implanted with 1 MeV Ag+ ions to various doses ranging from 5 × 1014 to 3 × 1016 ions cm?2 with a beam current density of 900 nA cm?2. Modification in the structure of polycarbonate as a function of the implantation fluence was investigated using micro-Raman spectroscopy, glancing angle X-ray diffraction, and UV-Vis spectroscopy. Raman spectroscopy pointed toward the formation of graphite structures/clusters due to the ion implantation. UV-Vis absorption analysis suggests the formation of a carbonaceous layer and a drastic decrease in optical band gap from 4.12 eV to 0.50 eV at an implanted dose of 3 × 1016 ions cm?2. The correlation between the decrease in band gap and the structural changes is discussed.  相似文献   

20.
A planar optical waveguide was formed in calcium barium niobate (CBN) crystal by 2.8-MeV He-ion implantation with a dose of 1.0×1016 ions/cm2 at room temperature. The prism-coupling method was used to take dark mode measurements at both 633 nm and 1539 nm. The refractive-index profile (no and ne) of the He-implanted CBN waveguide was analyzed with the reflectivity calculation method. The results show that the MeV He implantation results in a decrease in refractive index in barriers for both no (4.1%) and ne (3.1%), but for ne there is an increase in the waveguide region. The intensity profile of the guide mode and waveguide loss were obtained by end-fire coupling. PACS 42.79.Gn; 61.80.Jh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号