首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes of polyethylene terephthalate, irradiated by O6+ ions at various fluences were characterized by UV/VIS, FTIR, Micro-Raman spectroscopy’s, X-ray diffraction and Atomic force microscopy. UV/VIS measurements indicate shifting of the absorption edge from ultraviolet towards visible regions indicating carbonization while FTIR measurement shows the material degradation. The intensities of Raman band of ion irradiated polymer increases with the ion fluence. XRD results show decrease and shift in main peak of irradiated PET. Surface roughness is found to decrease with increasing ion fluence.  相似文献   

2.
The effect of an 8 MeV electron-beam on the structural, optical and dielectric properties of polystyrene films has been investigated respectively by means of Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–VIS) spectroscopy and electrical impedance (LCR) analysis over a radiation dose in the range of 50–250 kGy using a Microtron accelerator. The FTIR spectral analysis shows no change in the overall structure of the irradiated polystyrene films, except a minor change in the intensity of a few peaks in the FTIR spectrum, indicating that polystyrene is resistant to electron-beam irradiation over the range of radiation doses investigated. The optical band gap analysis using the UV–VIS absorption spectra of the polystyrene shows a small decrease in the optical band gap (E g) and the activation energy with an increase in electron doses. Further, the dielectric measurements over a frequency range of 100 Hz to 1 MHz for the electron-beam-irradiated polystyrene films show that both the dielectric constant and the dielectric loss increase with an increase in electron radiation dose, which may be ascribed to the formation of defect sites in the band gap of polystyrene as a consequence of molecular chain scission in the polymer films upon irradiation.  相似文献   

3.
ABSTRACT

Nonlinear optical materials (NLO) have been garnering attention due to their role in optical data storage, optical communication and laser technology. Organic crystals have emerged as an extremely important class of NLO materials, since their NLO properties compare very well with traditional inorganic NLO materials like KCl, LiNbO3, KDP (potassium dihydrogen phosphate), etc. They offer the additional advantage that they can be grown relatively inexpensively from solution close to room temperature, unlike the inorganic NLO materials which are grown from high temperature melts. In the present work, organic transparent single crystals of methyl para-hydroxy benzoate (MHB) were grown by slow evaporation solution growth technique (SEST) from aqueous solution at room temperature. The changes in structural, electrical and optical properties of gamma irradiated MHB single crystals were studied using X-ray diffraction (XRD), UV–Visible absorption spectroscopy, Photo-luminescence (PL), Fourier transform infrared (FTIR) spectroscopy and AC conductivity measurements at room temperature. The polished MHB single crystals were irradiated with gamma rays of doses 10 and 15 kilogray (kGy). From the XRD analysis, it was observed that gamma irradiation for these doses drastically decreases the crystallinity. The optical absorption constants were examined by UV-Visible absorption spectroscopy, measured over the wavelength range of 200–800?nm, at normal incidence. The optical band gap as estimated from the Tauc plot ((αhν)2 vs hν) was found to be reduced with increasing gamma irradiation doses. PL spectra showed emission at wavelengths of 361?nm (3.43?eV) and 452?nm (2.74?eV), with enhanced intensities for the irradiated crystals. FTIR spectroscopy was utilised to identify the functional groups of MHB and indicated the rupture of specific types of bonds with gamma irradiation. Apart from that, the enhancement of AC conductivity with gamma irradiation was also observed for the gamma irradiated crystals.  相似文献   

4.
Bayfol CR 1-4 polycarbonate is a class of polymeric solid state nuclear track detector which has many applications in various radiation detection fields. Samples from sheets of Bayfol have been irradiated with gamma doses ranging from 100 to 620 kGy. The structural modifications in the gamma-irradiated Bayfol samples have been studied as a function of dose, using different characterization techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, intrinsic viscosity and refractive index. The results indicate that the carbonyl group (C?O) degraded under irradiation up to 200 kGy. This degradation, reported by FTIR spectroscopy enhanced the degree of ordering in the degraded samples as revealed by the XRD technique. Above 200 and up to 620 kGy, cross-linking is achieved, leading to an increase in the intrinsic viscosity from 0.41 to 0.78 at 35°C, indicating an increase in the average molecular mass. On the other hand, the resultant effect of gamma irradiation on the thermal properties of Bayfol has been investigated using thermo-gravimetric analysis, results indicating that the gamma irradiation in the dose range 200–620 kGy led to a more compact structure of Bayfol polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition due to cross-linking. In addition, the V–I characteristics of the polymer samples were performed, results indicated that at higher voltage, the conduction mechanism of Bayfol CR 1-4 was identified as the Poole–Frenkel type.  相似文献   

5.
CR-39 polymer samples were irradiated with γ-irradiation up to dose ranging from 500 to 2000 kGy. The virgin and γ-irradiated polymer samples were investigated using UV–visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. In the present work, the Urbach energy was calculated using the Urbach edge method. Also, the direct and indirect energy band gaps in virgin and γ-irradiated CR-39 polymer samples were calculated. The values of indirect energy band gap were found to be lower than the corresponding values of direct energy band gap. The decrease in the optical energy band gap with increasing γ-irradiation dose was discussed on the basis of γ-irradiation-induced modifications in CR-39 polymer. The correlation between optical energy band gap and the number of carbon atoms in a cluster with modified Tauc's equation was also discussed. The FTIR spectra show considerable changes due to γ-irradiation, indicating that the detector is not chemically stable.  相似文献   

6.
Solid state/EPR (SS/EPR) dosimeters of carbon ions irradiated sucrose are studied with EPR, and their water solutions – with UV spectroscopy. Doses between 20 and 200 Gy are used with linear energy transfer (LET) values for carbon ions of 63, 77, 96 and 230 keV μm?1. After irradiation all samples show typical for irradiated sucrose EPR and UV spectra. The obtained data are compared with those previously reported for nitrogen particles and gamma rays irradiated sucrose. The identical shape of both the EPR and UV spectra of irradiated with various type radiation samples suggests that generated free radicals are not influenced by the nature of radiation. The lack of difference in the line width of the separate lines or the whole EPR spectrum, obtained for gamma and heavy particles irradiation, suggests negligible spin–spin interaction among the radiation-generated free radicals in the samples. The linear dependence of the EPR response on the absorbed dose radiation is found to be higher when generated by gamma rays, than by the same absorbed dose of heavy particles. In addition, the EPR response for carbon ions is higher than that for nitrogen ions. Water solutions of irradiated sucrose exhibit UV spectrum with absorption maximum at 267 nm, attributed to the recombination products of free radicals. The UV band intensity depends on the absorbed dose radiation. The UV spectra obtained for carbon, nitrogen and gamma rays irradiated sucrose are also compared.  相似文献   

7.
The effects of ion-beam bombardment on the physical and chemical properties of poly(allyl diglycol carbonate) (CR-39) polymer have been investigated. CR-39 samples were bombarded with 320 keV Ar and 130 keV He ions at fluences ranging from 1 × 1013 to 2 × 1016 ions/cm2. The nature and extent of radiation damage induced were studied by UV–VIS spectrometry, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, as well as Vickers' hardness measurements. In addition, the effect of ion fluence on the wetting properties of ion-beam bombarded CR-39 polymer was determined by measuring the contact angle for distilled water. UV–VIS spectra of bombarded samples reveal that the optical band gap decreases with increasing ion fluence for both Ar and He ions. In the FTIR spectra, changes in the intensity of the bands on irradiation relative to pristine samples occurred with the appearance of new bands. XRD analyses showed that the degree of ordering of the CR-39 polymer is dependent on the ion fluence. Changes of surface layer composition and an increase in the number of carbonaceous clusters produced important change in the energy gap and the surface wettability. The surface hardness increased from 10.54 MPa for pristine samples to 28.98 and 23.35 MPa for samples bombarded with Ar and He ions at the highest fluence, respectively.  相似文献   

8.
Medical grade propylene–ethylene (P–E) copolymer was irradiated by gamma rays. The radicals generated in the irradiated P–E copolymer were identified by using electron spin resonance (ESR) technique and the structural changes in the polymer were monitored with Fourier transform infrared spectroscopy (FTIR). The ESR spectra were analysed with computer simulations. The ESR studies show the formation of macro (~CH2–?H–CH2~), peroxy (POO˙), methyl and acyl (R–?=O) radicals and the asymmetric doublet, characteristic of peroxy radicals in the case of the sample irradiated at low dose (1 Mrad) and high doses (30 and 40 Mrad), respectively. The FTIR spectra of irradiated P–E copolymer indicate an increase in the concentration of peroxide groups. The absorption bands of –C=O and –OH groups were increased and the decline in the intensity of –CH3 group absorption band is reported.  相似文献   

9.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

10.
ABSTRACT

For a comprehensive understanding of the PVA/CdS nanocomposite properties, it is essential to select the suitable method for their preparation as well as elucidate the interfacial interactions, which still need support. CdS nanoparticles have been prepared by thermolysis method under the flow of nitrogen. Rietveld refinement of x-ray data shows that all the CdS samples have both cubic and hexagonal structures. Then PVA/CdS films were prepared by ex-situ technique. Samples from PVA/CdS nanocomposite have been irradiated with gamma doses in the range 10–120?kGy. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with UV–vis and FTIR spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with a refractive index in the range of 1.32–1.48 (at 500?nm). UV/VIS measurements were also used in calculating different optical parameters such as refractive index, extinction coefficient and optical band gap energy. Additionally, Tauc’s relation was used to determine the type of electronic transition. It is found that the gamma irradiation in the dose range 30-90?kGy led to a more compact structure of PVA/CdS nanocomposite and causes proper dispersion of CdS nanoparticles in the PVA matrix. This led to the formation of coordination reaction between OH of PVA and CdS nanoparticles, resulted in an increase in refractive index and the amorphous phase. Also, the gamma irradiation reduces the optical energy gap from 4.53 to 2.19?eV, and accompanied with an increase in the Urbach energy from 2.28 to 4.46?eV, at that dose range which could be attributed to the increase in structural disorder of the irradiated PVA/CdS nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the non-irradiated sample and the irradiated ones, was increased, from 0 to 10.8, with increasing the gamma dose, convoyed by an increase in the red and yellow color components.  相似文献   

11.
In this article, effect of gamma irradiation on the structural and optical properties of 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) has been reported. The grown crystals of 2AP4N were exposed to 60Co gamma rays with a dose of 50 kGy and 100 kGy. The radiation-induced effects were analyzed using X-ray diffraction, FT-IR, UV–visible, photoluminescence techniques. The refractive index was determined using a long arm spectrometer. The structural properties of the pristine and irradiated crystals were studied using powder XRD. The peak intensity decrease after irradiation may be attributed to the formation of point defects. The UV visible study reveals that the energy gap has decreased after irradiation and then has increased for the higher dose. The intensity variation in the PL spectra is due to colour center mechanism. The SHG efficiency of 2AP4N crystals was found to be unaffected by gamma irradiation.  相似文献   

12.
The UV–Visible, Fourier transform infrared (FTIR) and Raman and electron spin resonance (ESR) spectra of undoped lead phosphate and MoO3-doped glassy samples have been investigated. The UV–VIS absorption spectra were re-measured after successive gamma irradiation. Before irradiation, undoped sample exhibited strong ultraviolet absorption, which was attributed to co-absorption due to trace iron impurities (mainly Fe3+ ions) and lead Pb2+ ions. With the introduction of MoO3 in progressive amounts, extra visible bands were recorded at about 400–440, 540, 750 and 870?nm. These bands are most likely correlated with the presence of Mo3+, Mo4+ and Mo5+ ions in the host glass. In the undoped specimen, gamma irradiation produced UV absorption bands that increased slightly with irradiation but no visible bands were recorded. Samples containing high MoO3 content showed some resistance to irradiation with no bands in the visible region being observed. FTIR absorption spectra of the undoped and MoO3-doped samples revealed the formation of metaphosphate and pyrophosphate structural units. Highly MoO3-doped samples exhibited additional bands due to molybdate groups. Raman and ESR spectra were in agreement with UV–VIS and IR data, indicating the presence of molybdenum ions in lead phosphate glass, as Mo3+, Mo4+ and Mo6+ with different ratios. However, such glassy systems favor the trivalent species.  相似文献   

13.
Poly vinylidene chloride (PVDC) irradiated with lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver ions (120 MeV) having fluence range of 1 × 1011 ions/cm2 to 3 × 1012 ions/cm2 have been studied using different techniques i.e. XRD (X-ray diffraction), FTIR (Fourier transform infrared), UV–Visible and TGA (thermo-gravimetric analysis). In XRD analysis, the intensity of diffraction peaks of PVDC irradiated with lithium ions was enhanced at lower fluence as compared to pristine. The shift in optical absorption edge in irradiated PVDC was correlated with the decrease in optical band gap energy. The distinguishable characteristic peaks were observed due to UV–Vis analysis, in lithium irradiated samples of PVDC at higher fluences. The % age decrease in optical band gap energy for the respective ions were 30.9%, 34.16%, 81.1%, 87.02% respectively. Formation of double carbon bonds and breaking of C–O and C–Cl bonds with the release of Cl in irradiated PVDC was observed in FTIR spectra. In Thermogravimetric analysis (TGA), the % age weight loss observed for irradiated samples with increase in ion fluence was lesser than the % age weight loss observed in pristine sample.  相似文献   

14.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

15.
PES membrane of thickness 25 μm was irradiated by Cl9+ ions of energy 100 MeV at IUAC, New Delhi. Microstructure changes due to exposure to high-energy ions were investigated by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/vis) absorption spectroscopies, X-ray diffraction technique and by dynamic mechanical analysis (DMA). A significant loss of crystallinity is observed by the XRD data. Particle size or grain size calculated using Scherrer formula indicates measurable change in particle size of irradiated samples. The polymer chain scissions and structure degradations are expected to occur for irradiated samples. Optical properties of the films were changed due to irradiation that could be clearly seen in the absorption spectra. FTIR does not show the remarkable change in the irradiated samples, but there is some change in the surface roughness observed by AFM.  相似文献   

16.
用傅立叶变换红外光(FTIR)谱仪和紫外/可见光(UV/VIS)谱仪研究了2.1GeVKr离子在聚碳酸酯(PC)膜中产生的效应.研究结果表明,在高能Kr离子辐照下,PC膜中发生了断键、断链和键的重组,炔基的出现是键的断裂和重组的结果.这些效应与辐照剂量和电子能损有关.辐照也使PC膜中发生了从氢化非晶态碳向非晶态碳的转变,在UV/VIS中,波长为380,450和500nm处的相对吸光度随能量沉积密度的增加近似按线性变化.  相似文献   

17.
Polypropylene (PP) and polyimide (PI), which belong to entirely different classes of polymers, are irradiated by Co-60 gamma radiation under similar doses and similar conditions in the dose range varying from 57.6 to 230.4 kGy. The radiation responses of these two polymers are analyzed by various characterizations such as Fourier transform infrared, UV–visible, energy-dispersive spectroscopy, X-ray diffraction, scanning electron microscopy and contact angle. PP shows substantial modifications in its structure and properties while in the same dose range, PI shows remarkable stability. These two different responses are interpreted in terms of physicochemical structure and properties of these polymers.  相似文献   

18.
The WO3–PbO–B2O3 glasses and glass ceramics are prepared and investigated with the help of XRD, density, molar volume, UV–visible and FTIR spectroscopy. XRD pattern reveals the glassy behavior up to 4% concentration of WO3 and ceramic behavior of the prepared samples with concentration of WO3 >4%. Band gap of glass samples decreases with increase in the WO3 concentration from 0–5%. The samples with WO3 concentration >5% do not respond to UV–visible absorption. The density and molar volume measurements show the compaction of structure of the samples, which is due to the formation of BO4 groups. FTIR spectroscopy shows the formation of BO4 group and W–O–W bending vibration at high concentration of WO3.  相似文献   

19.
A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150?kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150?kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).  相似文献   

20.
The correlation between protonic conduction and the amount of radiation-induced defects in gamma-ray-irradiated perfluorosulfonic acid (PFSA) polymers (Aciplex-SF-1004®) has been investigated using a direct-current resistance method, transmission spectroscopy for the ultraviolet (UV) and visible (Vis) wavelength ranges and Fourier transform infrared (FTIR) spectroscopy with the attenuated total refraction (ATR) technique. The proton conductivity of the polymers, which are irradiated with a dose of up to 532 kGy under vacuum at room temperature and subsequently exposure to air, is enhanced by approximately three orders of magnitude as compared to that of the unirradiated polymer. The UV–Vis spectra of the irradiated polymers reveal the presence of fluorocarbon radicals, which increase with the irradiation dose. It is also observed in the UV–Vis and FTIR spectra that peroxy free radicals, unsaturated species (COF), and a carboxyl group (COOH) containing a carbon-oxygen double bond are formed by reactions of the fluorocarbon radicals with oxygen or water vapor in air. In addition, an increase in the hydrogen concentration is observed in the near-surface regions of the irradiated polymers by using an elastic recoil detection (ERD) technique. The production of charge carriers such as protons and oxonium ions (H3O+) by the interaction of water vapor with the activating-radiation-induced defects leads to the enhancement of the proton conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号