首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spectroscopy of single InAs/InP quantum dots emitting close to 1.55 μm is described. The dots are produced using a nanotemplate deposition technique that allows precise, a priori control of quantum dot position and electronic configuration. The experimentally observed luminescence signal from the p-shell is composed of several lines. Using exact diagonalization calculations of the emission spectra we interpret the splittings between these lines in terms of Coulomb induced, many-body renormalization of the excitonic states and a template-induced shape asymmetry of the quantum dot.  相似文献   

2.
We present an optical spectroscopy and photon correlation measurement at telecommunication wavelengths performed on single InAs/InP quantum dots. Two main approaches brought high optical quality: an application of a ‘double-cap’ growth method to metalorganic chemical vapor deposition, and fabrication of a small mesa structure using low-damage wet chemical etching. Sharp and discrete exciton transition lines have been observed on the single quantum dots, which widely cover the spectral range of 1.3–1.55 μm. Using a pulsed excitation source and gated single-photon detection modules, we observed a photon antibunching behavior for an isolated exciton emission line, indicating nonclassical light emission near the wavelength of 1.3 μm.  相似文献   

3.
We present atomistic theory of electronic and optical properties of a single InAs quantum dot grown on a pyramidal InP nanotemplate. The shape and size of the dot is assumed to follow the nanotemplate shape and size. The electron and valence hole single particle states are calculated using atomistic effective–bond–orbital model with second nearest-neighbor interactions. The electronic calculations are coupled to separately calculated strain distribution via Bir–Pikus Hamiltonian. The optical properties of InAs dots embedded in InP pyramids are calculated by solving the many-exciton Hamiltonian for interacting electron and hole complexes using the configuration–interaction method. The effect of quantum-dot geometry on the optical spectra is investigated by a comparison between dots of different shapes.  相似文献   

4.
We studied the growth of InAs quantum dots on InP (0 0 1) substrates in a low-pressure metalorganic chemical vapor deposition by using a so-called InP ‘double-cap’ procedure. With double-capping, a photoluminescence spectrum is modified into a series of multiple peaks, where the emission peaks arise from several quantum dot families with different heights changing in a step of integer number of an InAs monolayer. Cross-sectional transmission electron micrograph observations revealed that the shape of double-capped dots is dramatically changed into a thin plate-like shape with extremely flat upper and lower interfaces, being consistent with our interpretation of the photoluminescence spectrum. We showed that the procedure was extremely useful for controlling the emission wavelength from quantum dots in an InAs/InP (0 0 1) system.  相似文献   

5.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

6.
The electron tunneling through single self-assembled InAs dot in split-gate δ-doped channel transistor structure is reported for the first time. In the nearly pinch-off conditions, the channel current was found to manifest itself single-electron tunneling through a self-assembled InAs dot buried in adjacent to the channel. The line shape of the single-electron tunneling current through a single InAs dot is discussed.  相似文献   

7.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

8.
We study the mechanism of ordered growth of InAs quantum dots (islands) on a GaAs/InP substrate in theory and point out that the tensile strain can be used to control InAs/InP self-assembled quantum dots arrangement. Photoluminescence spectrum, and atomic force microscopy images have been investigated. In the experiment, ordered InAs islands have been obtained and the maximum density of quantum dots is 1.6×1010 cm−2 at 4 monolayers InAs layer.  相似文献   

9.
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to −4 Å/°C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength.  相似文献   

10.
In this paper, a theoretical model is used to investigate the lasing spectrum properties of InAs/InP (113)B quantum dot (QD) lasers emitting at 1.55 μm. The numerical model used is based on a multi-population rate equation (MPRE) analysis. It takes into account the effect of the competition between the inhomogeneous broadening (due to the QD size dispersion) and the homogenous broadening as well as a nonlinear gain variation associated to a multimode laser emission. The double laser emission and the temperature dependence of lasing spectra of self-assembled InAs/InP quantum dot lasers is studied both experimentally and theoretically.  相似文献   

11.
During the recent years semiconductor nanostructures have attracted considerable interest with respect to potential applications in quantum information processing. In particular, quantum dot molecules have been suggested to provide the building block of a quantum computer: forming quantum gates due to coherent coupling of two dots. The characteristic dependence of the splitting of ‘bonding’ and ‘anti-bonding’ states suggests coherent coupling of two InAs/GaAs quantum dots. Anti-crossings in the fine structure of excitons due to mixing of optically bright and dark states have been observed in Faraday configuration. In Voigt configuration the diamagnetic shift of the quantum dot molecule is enhanced compared to a single quantum dot. These findings altogether demonstrate the coherent coupling of exciton states in quantum dot molecules.  相似文献   

12.
We report on the measurements of the photoluminescence from the s-shell of a single InAs/GaAs quantum dot in magnetic fields up to 23 T. The observed multiline emission is attributed to different charge states of a single dot. Characteristic anticrossing of emission lines is explained in terms of hybridization of final states of a triply charged exciton (X−3).  相似文献   

13.
The optical performance of InAs/InGaAsP quantum dot (QD) lasers grown on (1 0 0) InP was studied for three different material structures. The most efficient QD laser structure, having a threshold current of 107 mA and an external differential quantum efficiency of 9.4% at room temperature, was used to form the active region of a grating-coupled external cavity tunable laser. A tuning range of 110 nm was demonstrated, which was mainly limited by the mirror and internal losses of the uncoated laser diode. Rapid state-filling of the QDs was also demonstrated by observing the evolution of the spectra with increasing injected current.  相似文献   

14.
利用固源分子束外延设备生长出InAs/InAlAs/InP(001)纳米结构材料, 探讨了As压调制的InAlAs超晶格对InAs纳米结构形貌的影响. 结果表明, As压调制的InAlAs超晶格能控制InAs量子线的形成, 导致高密度均匀分布的量子点的生长. 结果有利于进一步理解量子点形貌控制机理. 分析认为, InAs纳米结构的形貌主要由InAlAs层的各向异性应变分布和In吸附原子的各向异性扩散所决定.  相似文献   

15.
We have designed, grown and fabricated InAs/InP quantum dot (QD) waveguides as the gain materials of mode-locked lasers (MLLs). Passive InAs/InP QD MLLs based on single-section Fabry-Perot (F-P) cavities with repetition rates from 10 GHz to 100 GHz have been demonstrated in the C- and L-band. Femtosecond (fs) pulses with pulse duration of 295 fs have been achieved. The average output power is up to 50 mW at the room temperature of 18 °C. By using the external fiber mixed cavities fs pulse train with a repetition rate of 437 GHz has been generated. We have also discussed the working principles of the developed QD MLLs.  相似文献   

16.
Linewidth enhancement factor (LEF) of InAs/InP quantum dot (QD) multi-wavelength lasers (MWLs) emitting around 1.5 μm is investigated both above and below the threshold. Above the threshold, LEFs at three different wavelengths around the gain peak of 1.53 μm by the injection locking technique are obtained to be 1.63, 1.37 and 1.59. Then by Hakki–Paoli method LEF is found to decrease with increased current and shows a value of less than 1 below the threshold. These small LEF values have clearly indicated that our developed InAs/InP QDs are perfect and promising gain materials for QD MWLs, QD mode-locked lasers (QD MLLs) and QD distributed-feedback (QD DFB) lasers around 1.5 μm.  相似文献   

17.
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.  相似文献   

18.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

19.
We calculate the minimum Gibbs free energy of the InAs/InP quantum dot multilayer by combining the method of moving asymptotes and the finite element method. Based on the principle of the least energy, the transition between vertically aligned and anti-aligned quantum dot multilayers is studied. We investigate the influence of quantum dot base size and density on critical spacer thickness for the transition. The study results indicate that the critical thickness increases with the decrease in the density of quantum dots, while the base size of the quantum dot is linear to the critical thickness when the density is given.  相似文献   

20.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号