首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a non-polynomial coupled plate theory for smart composite structures employing inverse hyperbolic displacement and electric potential functions. The theory is utilized towards analysis of composite piezoelectric plates operating in sensor and actuator modes. Particularly, the following three cases are studied: (i) passive laminated composite structure, (ii) composite piezoelectric plate actuator and (iii) unimorph and bimorph piezoelectric plate sensors. Analytical solutions are obtained for simply supported plates under static electrical and mechanical loads. These results are validated with existing 3D elasticity solutions and compared with other plate theory solutions. Furthermore, parametric studies are performed to determine the effect of loading, span-to-thickness ratio and lamination sequence on the response of the piezoelectric plate. Finally, the theory is applied to a transverse shear sensing device which utilizes transverse shear-electric field coupling in piezoelectric materials. This effect is often ignored in literature.It is observed that the maximum percentage error of the present theory, when compared with 3D results, is less than 3%, which is lower than other higher order plate theories.  相似文献   

2.
Shell type components and structures are very common in many mechanical and structural systems. In smart structural applications, piezolaminated plates and shells are commonly used. In this paper a finite element formulation is presented to model the static and dynamic response of laminated composite shells containing integrated piezoelectric sensors and actuators subjected to electrical, mechanical and thermal loadings. The formulation is based on the first order shear deformation theory and Hamilton's principle. In this formulation, the mass and stiffness of the piezo-layers have been taken into account. A nine-noded degenerated shell element is implemented for the analysis. The model is validated by comparing with existing results documented in the literature. A simple negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of an integrated structure through a closed control loop. The influence of the stacking sequence and position of sensors/actuators on the response of the laminated cylindrical shell is evaluated. Numerical results show that piezoelectric sensors/actuators can be used to control the shape and vibration of laminated composite cylindrical shell.  相似文献   

3.
基于Karman-Donnell型非线性壳体方程,给出带压电作动器混合层合圆柱曲板在机械荷载、电荷载和热荷载作用下的后屈曲分析.假定温度场为均匀分布,电场仅有沿板厚方向的分量Ez,且假定材料性能常数与温度和电场的变化无关。将壳体屈曲的边界层理论推广到混合层合圆柱曲板受复合荷载作用的情况.相应的奇异摄动法用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径.分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响.数值算例给出完善和非完善,含整体覆盖或内埋压电作动器正交铺设层合圆柱曲板的后屈曲平衡路径。讨论了温度变化、控制电压、铺层方式、面内边界条件和初始几何缺陷等各种参数变化的影响。  相似文献   

4.
Rolf Lammering  Fan Yang 《PAMM》2008,8(1):10531-10532
In this contribution, a free–locking shell element with piezoelectric ceramic layers is presented. The material law and the constitutive equations of the coupled electro–mechanical problem are derived in convective coordinates, so that the presented element accounts for geometrical nonlinearities [2]. To avoid zero–energy mode and locking effects of the thin shell structure, assumed natural strain (ANS) method [1] is implemented. Finally, some numerical examples demonstrate the ability of this element to solve linear and nonlinear problems. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The paper deals with the asymptotic formulation and justification of a mechanical model for a dynamic piezoelastic shallow shell in Cartesian coordinates. Starting from the three‐dimensional dynamic piezoelastic problem and by an asymptotic approach, the authors study the convergence of the displacement field and of the electric potential as the thickness of the shell goes to zero. In order to obtain a nontrivial limit problem by asymptotic analysis, we need different scalings on the mass density. The authors show that the transverse mechanical displacement field coupled with the in‐plane components solves an problem with new piezoelectric characteristics and also investigate the very popular case of cubic crystals and show that, for two‐dimensional shallow shells, the coupling piezoelectric effect disappears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an analytical method to investigate the nonlinear vibration characteristics of bi-graphene sheets/piezoelectric (BGP) laminated films subjected to electric loading based on a nonlocal continuum model, in which the two adjacent layers are coupled by van der Walls force. Utilizing von Kármán nonlinear geometric relation and nonlocal physical relation, the nonlinear dynamic equation of BGP laminated films under electric loading exerted on the piezoelectric layer is found, then the relation between the nonlinear resonant frequency and the nonlinear vibration amplitude for each layer of the BGP laminated films is obtained by using Galerkin method and harmonic-balance method. Results show that the nonlinear vibration amplitude for each layer of laminated films can be controlled by adjusting the electric potential exerted on piezoelectric layer, and the coupled effect of van der Walls force between graphene sheet and piezoelectric layer on the vibration amplitude of each layer depends on the order number of nonlinear resonant frequency and the mode shape.  相似文献   

7.
Piezoelectric materials offer many possibilities in advanced engineering structures due to their inherent coupling effects between mechanical and electrical fields and are widely applied in smart devices and structures like transducers, actuators and sensors [2]. An important application of piezoelectric materials is related to layered or laminated composites because they can be optimized to satisfy the high-performance requirements according to different in-service conditions. Beside cracks inside homogeneous domains, one of the most dominant failure mechanisms in layered or laminated composites is the interface failure. Interface cracks and interface debonding may be induced by the mismatch of the mechanical, electrical and thermal properties of the material constituents during the manufacturing process and the in-service loading conditions. This paper presents a hypersingular symmetric Galerkin boundary element method (SGBEM) for crack analysis in two-dimensional (2D), layered and linear piezoelectric solids. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
根据压电材料修正后的Hellinger-Reissner(H-R)变分原理,建立了各向异性压电材料4节点Hamilton等参元的一般形式.为智能叠层板自由振动问题和带有压电块的叠层悬臂梁的瞬态响应等问题提出了一种新的半解析法.数学模型的基本步骤:将压电层和主体层看成独立的三维体,在平面内离散各层,分别建立各层的方程;根据主体层和压电层在连接界面上广义应力和广义位移的连续条件,联立主体层和压电层的方程得到全结构的控制方程.等参元不限制智能板侧面的几何边界形状、板的厚度和层数,有广泛的应用领域.  相似文献   

10.
Jens Artel  Wilfried Becker 《PAMM》2004,4(1):181-182
The present paper considers the effect of electromechanical coupling on the interlaminar stresses and the electric field strengths at free edges of laminated plates with piezoelectric material properties. The results of coupled and uncoupled piezoelectric analyses performed by use of the finite element method are compared. Exemplarily, a symmetric cross‐ply and a symmetric angle‐ply laminate are investigated under uniaxial tension and without any electrical loading. It is shown that the interlaminar stresses at the free edge are significantly higher in the coupled case for the symmetric cross‐ply laminate, whereas the coupling effect for the symmetric angle‐ply laminate is of minor significance. In addition, the occurrence of electric field strengths with singular character is revealed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
An analytical method is presented to study the non-linear buckling characteristic of rectangular local delamination near the surface of fiber-reinforced piezoelectric lamination shells under coupled mechanical and electric loads. The stacking sequence of fiber reinforced lamination shells with piezoelectric layers is considered as symmetry, but the stacking sequence of rectangular local delamination sub-shells is arbitrary. Based on the nonlinear displacement mode of delaminated sub-shells, the effects of electric fields, the geometrical, physical parameters and stacking sequences of piezoelectric laminated shells on the non-linear local buckling for rectangular delamination near the surface of piezoelectric laminated base-shells are solved.  相似文献   

12.
Stefan Ringwelski  Ulrich Gabbert 《PAMM》2008,8(1):10699-10700
Over the past years much research and development has been done in the area of active control in order to improve the acoustical and vibrational properties of thin–walled lightweight structures. An efficient technique for actively reducing the structural vibration and sound radiation is the application of smart structures. In smart structures piezoelectric materials are often used as actuators and sensors. The design of smart structures requires fast and reliable simulation tools. Therefore, the purpose of this paper is to present a coupled finite element–boundary element formulation, which enables the modeling of piezoelectric smart lightweight structures. The paper describes the theoretical background of the coupled approach in which the finite element method (FEM) is applied for the modeling of the passive vibrating shell structure as well as the surface attached piezoelectric actuators and sensors. The boundary element method (BEM) is used to characterize the corresponding sound field. In order to derive a coupled FE–BE formulation additional coupling conditions are introduced at the fluid–structure interface. Since the resulting overall model contains a large number of degrees of freedom, the mode superposition method is employed to reduce the size of the FE submodel. To validate the accuracy of the proposed approach, numerical simulations are carried out in the frequency domain and the results are compared with analytical reference solutions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper presents the free vibration analysis of piezoelectric coupled annular plates with variable thickness on the basis of the Mindlin plate theory. No work has yet been done on piezoelectric laminated plates while the thickness is variable. Two piezoelectric layers are embedded on the upper and lower surfaces of the host plate. The host plate thickness is linearly increased in the radial direction while the piezoelectric layers thicknesses remain constant along the radial direction. Different combinations of three types of boundary conditions i.e. clamped, simply supported, and free end conditions are considered at the inner and outer edges of plate. The Maxwell static electricity equation in piezoelectric layers is satisfied using a quadratic distribution of electric potential along the thickness. The natural frequencies are obtained utilizing a Rayleigh–Ritz energy approach and are validated by comparing with those obtained by finite element analysis. A good compliance is observed between numerical solution and finite element analysis. Convergence study is performed in order to verify the numerical stability of the present method. The effects of different geometrical parameters such as the thickness of piezoelectric layers and the angle of host plate on the natural frequencies of the assembly are investigated.  相似文献   

14.
15.
This contribution is concerned with mixed finite element formulations for modeling piezoelectric beam and shell structures. Due to the electromechanical coupling, specific deformation modes are joined with electric field components. In bending dominated problems incompatible approximation functions of these fields cause incorrect results. These effects occur in standard finite element formulations, where interpolation functions of lowest order are used. A mixed variational approach is introduced to overcome these problems. The mixed formulation allows for a consistent approximation of the electromechanical coupled problem. It utilizes six independent fields and could be derived from a Hu-Washizu variational principle. Displacements, rotations and the electric potential are employed as nodal degrees of freedom. According to the Timoshenko theory (beam) and the Reissner-Mindlin theory (shell), the formulations account for constant transversal shear strains. To incorporate three dimensional constitutive relations all transversal components of the electric field and the strain field are enriched by mixed finite element interpolations. Thus the complete piezoelectric coupling is appropriately captured. The common assumption of vanishing transversal stress and dielectric displacement components is enforced in an integral sense. Some numerical examples will demonstrate the capability of the presented finite element formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
基于Reddy高阶剪切变形理论的Kármám-Donnell型非线性壳体方程,给出复合材料层合剪切圆柱曲板在侧压作用下的后屈曲分析。将壳体屈曲的边界层理论推广到复合材料层合剪切圆柱曲板受侧压作用的情况。相应的奇异摄动法,用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径。分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响。数值算例给出完善和非完善,中等厚度正交铺设层合圆柱曲板的后屈曲荷载-挠度曲线。讨论了横向剪切变形,曲板几何参数,铺层数,铺展方式和初始几何缺陷等各种参数变化的影响。  相似文献   

17.
Dieter Legner  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10303-10304
This contribution is concerned with a piezoelectric shell formulation. The present shell element has four nodes and bilinear interpolation functions. The nodal degrees of freedom are displacements, rotations and the electric potential on top and bottom of the shell. A 3D–material law is incorporated. In case of bending dominated problems incompatible approximation functions of the electrical and mechanical fields cause incorrect results. This effect occurs in standard element formulations, where the mechanical and electrical degrees of freedom are approximated with lowest order interpolation functions. In order to overcome this problem a mixed multi–field variational approach is introduced. It allows for approximations of the electric field and the strains independent of the bilinear interpolation functions. A quadratic approach for the shear strains and the electric field is proposed through the shell thickness. This leads to well balanced approximation functions regarding coupling of electrical and mechanical fields. A numerical example illustrates the more precise results in contrast to standard elements. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Rolf Lammering  Fan Yang 《PAMM》2006,6(1):237-238
In this contribution, an isoparametric piezoelectric shell element is presented which is based on convective coordinates and which allows for the analysis of arbitrary shell geometries. A two-field variation formulation [1, 2] is used in which the displacements and the electric potentials serve as independent variables. Especially, for thin-walled structures under certain boundary conditions and load cases, the displacement based element tend to shear and membrane locking. In order to avoid this poor behaviour, the Assumed Natural Strain (ANS) method [3] is introduced into the piezoelectric shell element. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, three-dimensional elasticity solution is extended to investigate a FGPM finite length, simply supported shell panel under dynamic pressure excitation. The host panel is assumed to be of some functionally graded piezoelectric material (FGPM). The ordinary differential equations (o.d.e.) are derived from the highly coupled partial differential equations (p.d.e.) using series expansions of mechanical and electrical displacements. The resulting system of ordinary differential equations is solved by means of Galerkin finite element method. At last, numerical examples are presented for a FGPM shell panel. To verify the validity of code and formulation, the results of a FGM panel and a FGM plate are compared with the published results.  相似文献   

20.
The postbuckling characteristics of the angle-ply laminated composite conical shells subjected to the torsion, the external pressure, the axial compression, and the thermal loading considering uniform temperature change are studied using the semi-analytical finite element approach. The finite element formulation is based on the first-order shear deformation theory and the field consistency principle. The variations in the stiffness coefficients along the meridional direction due to the changes in the ply-angle and the ply-thickness of the filament wound conical shells are incorporated in the finite element formulation. The nonlinear governing equations are solved using the Newton–Raphson iteration procedure coupled with the displacement control method to trace the prebuckling followed by the postbuckling equilibrium path. The presence of asymmetric perturbation in the form of a small magnitude load spatially proportional to the linear buckling mode shape is considered to initiate the bifurcation of the shell deformation. The influence of semi-cone angle, ply-angle and number of circumferential waves on the prebuckling/postbuckling response of the anti-symmetric angle-ply laminated circular conical shells is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号