首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a nonlinear static finite element analysis of simply supported smart functionally graded (FG) plates in the presence/absence of the thermal environment has been presented. The substrate FG plate is integrated with the patches of piezoelectric fiber reinforced composite (PFRC) material which act as the distributed actuators of the plate. The material properties of the FG substrate plate are assumed to be temperature dependent and graded along the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The derivation of this nonlinear thermo-electro-mechanical coupled finite element model is based on the first order shear deformation theory and the Von Karman type geometric nonlinearity. The numerical solutions of the nonlinear equations of the finite element model are obtained by employing the direct iteration method. The numerical illustrations suggest the potential use of the distributed actuator made of the PFRC material for active control of nonlinear deformations of smart FG structures. The effects of volume fraction index of the FG material of the substrate plates and the locations of the PFRC patches on the control authority of the patches are investigated. Emphasis has also been placed on investigating the effect of variation of piezoelectric fiber orientation angle in the PFRC patches on their actuation capability for counteracting the large deflections of FG plates.  相似文献   

2.
This paper presents a novel finite element formulation for static, free vibration and buckling analyses of laminated composite plates. The idea relies on a combination of node-based smoothing discrete shear gap method with the higher-order shear deformation plate theory (HSDT) to give a so-called NS-DSG3 element. The higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The formulation uses only linear approximations and its implementation into finite element programs is quite simple and efficient. The numerical examples demonstrated that the present element is free of shear locking and shows high reliability and accuracy compared to other published solutions in the literature.  相似文献   

3.
A finite element formulation of the equations governing laminated anisotropic plates using Reddy's higher-order theory is presented. This simple higher-order shear deformable theory takes into account the parabolic distribution of the transverse shear deformation through the thickness of the plate and contains the same unknowns as in the first-order shear deformation theory. Finite element solutions are presented for rectangular plates of different layups, such as cross-ply, antisymmetric angle-ply, and sandwich plates with various material properties, boundaries, and plate aspect ratios. The numerical results are compared with the available closed-form results, the 3-D linear elasticity theory results, and the other available numerical results. A comparison is also made with test data from a laminated cantilever plate.  相似文献   

4.
A closed form expressions for bending problem of magneto-electro-elastic (MEE) rectangular thin plates are derived, the exact solutions for the deformation behaviors of the fiber-reinforced BaTiO3/CoFe2O4 composites subjected to certain types of surface loads are analytically obtained. Based on Kirchhoff thin-plate theory, structural characteristics such as elastic displacements, electric potential and magnetic induction for magneto-electro-elastic (MEE) rectangular plates are investigated, the governing equation in terms of the transverse displacement is presented in a rather compact form due to the omission of the transverse shear deformation and rotatory inertia. The material coefficients for the MEE plate can be uniquely expressed by the volume-fraction (v.f.) of piezoelectric constituent BaTiO3 in the fiber-reinforced composite, and are tabulated with 25% offset of the volume-fraction. The deformation variations of the MEE thin plate with closed-circuit electric restriction are evaluated analytically according to their specified boundary conditions, and the effects of the volume-fractions on the deformations variations are discussed. It can be found that all the results obtained by using the proposed model have reached good agreements with the other available research works, whereas, the present study provides a much simpler way in seeking the analytic solutions for the interactively coupled quantities of a multiphase medium.  相似文献   

5.
This paper studied compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The material properties are assumed to be temperature-dependent and the initial geometric imperfection of the plate is considered. The compressive and thermal postbuckling behaviors of perfect, imperfect, symmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded PFRC actuators are conducted under different sets of thermal and electric loading conditions. The results reveal that, the applied voltage usually has a small effect on the postbuckling load–deflection relationship of the plate with PFRC actuators in the compressive buckling case, whereas the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

6.
In this paper, the interlaminar stresses of generally laminated piezoelectric (PZT) plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to study coupling influence on the edge effects of piezolaminated plates with finite dimensions and arbitrary lay-ups under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical methods or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, special cases such as cross-ply or symmetric laminates are investigated and the results are compared with other analytical solutions available in the literature. Excellent agreement is achieved and then other numerical results are presented for general cases. Numerical examples imply on the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to the lay-ups of piezoelectric plate is studied in several examples.  相似文献   

7.
Based on a 7-parameter shell model, a numerical algorithm has been developed for solving a coupled problem of thermoelectroelasticity for a laminated piezoelectric shell subjected to a thermoelectromechanical loading. As unknowns, six tangential and transverse displacements of outer surfaces and the transverse displacement of shell midsurface are chosen. This choice provides a possibility of utilizing the complete 3D constitutive equations of thermopiezoelectricity. A geometrically exact 3D hybrid piezoelectric shell element is formulated by using nonconventional analytical integration. With the help of this finite element, solutions of coupled problems of thermoelectroelasticity for laminated plates and shells with segmented and distributed piezoelectric sensors and actuators are obtained.  相似文献   

8.
功能梯度压电材料(FGPM)同时兼具功能梯度材料和压电材料特性,可为多功能或智能化轻质结构设计提供支撑,在诸多领域有着广泛的应用前景.将Mian和Spencer功能梯度板理论由功能梯度弹性材料推广到功能梯度压电材料,解析研究了FGPM板的柱面弯曲问题,其中,材料弹性常数、压电和介电参数沿板厚方向可以任意连续变化.最终,给出了FGPM板受横向均布荷载作用下柱面弯曲问题的弹性力学解.通过算例分析,重点讨论了压电效应对FGPM板静力响应的影响.  相似文献   

9.
Integrating engineering structures with piezoelectric layers as actuator and/or sensor offers smart sandwich structures with controllable static and dynamic deflections. In this paper, a smart sandwich plate consisting of a light nanoclay-reinforced composite core and two piezoelectric face sheets is considered. The static and dynamic behaviors of the proposed smart plate are obtained using their governing coupled electro-mechanical system of equations. In order to facilitate the governing equations, a mesh-free method based on moving least square (MLS) shape function and first order shear deformation (FSDT) is developed and implemented. Two morphologies of intercalated stack and exfoliated nanoclay dispersions are considered in the distribution of the nanoclay into the polymeric matrix. The effects of morphology and volume fraction of the nanoclay, time-dependent loading, and essential boundary condition on the static and dynamic behavior of the smart piezoelectric-integrated nanocomposite plates are examined. In the dynamic analysis, resonance and amplitude modulation phenomena are studied. It is observed that the use of nanoclay, especially with exfoliated morphology, improves the static and the free vibration responses of the smart sandwich plates. Moreover, the frequency of the applied mechanical load has a significant effect on the electro-dynamic response of the proposed smart sandwich plates.  相似文献   

10.
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is revisited to offer a fresh insight into its fundamental assumptions and practical possibilities. The theory is introduced from a multiscale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse displacement field is that of first‐order shear‐deformation theory, whereas the fine displacement field has a piecewise‐linear zigzag distribution through the thickness. The resulting kinematic field provides a more realistic representation of the deformation states of transverse‐shear‐flexible plates than other similar theories. The condition of limiting homogeneity of transverse‐shear properties is proposed and yields four distinct variants of zigzag functions. Analytic solutions for highly heterogeneous sandwich plates undergoing elastostatic deformations are used to identify the best‐performing zigzag functions. Unlike previously used methods, which often result in anomalous conditions and nonphysical solutions, the present theory does not rely on transverse‐shear‐stress equilibrium constraints. For all material systems, there are no requirements for use of transverse‐shear correction factors to yield accurate results. To model homogeneous plates with the full power of zigzag kinematics, infinitesimally small perturbations in the transverse shear properties are derived, thus enabling highly accurate predictions of homogeneous‐plate behavior without the use of shear correction factors. The RZT predictive capabilities to model highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy, and a wide range of applicability. This theory, which is derived from the virtual work principle, is well‐suited for developing computationally efficient, C0 a continuous function of (x1,x2) coordinates whose first‐order derivatives are discontinuous along finite element interfaces and is thus appropriate for the analysis and design of high‐performance load‐bearing aerospace structures. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

11.
基于Hamilton原理、高阶剪切变形板理论、von Krmn型几何非线性应变-位移关系以及应变能等效原理,考虑压电层的质量和刚度及复合材料层内的损伤效应,建立了具损伤压电智能层合板的非线性运动方程.采用耦合正、逆压电效应的负速度反馈控制原理,形成闭环控制回路,实现了对压电智能层合板的主动控制和损伤监测.数值计算中,以四边简支面内不可动的层合矩形板为例,讨论了压电层位置对振动控制的影响,以及损伤程度和损伤位置对传感层输出电压的影响,提出一种损伤监测的方法.  相似文献   

12.
In this work, a transverse bending of shear deformable laminated composite plates in Green–Lagrange sense accounting for the transverse shear and large rotations are presented. Governing equations are developed in the framework of higher order shear deformation theory. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strains conditions at the top and bottom surfaces of the plate in von-Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model. Numerical results for the laminated composite plates of orthotropic materials with different system parameters and boundary conditions are found out. The results are also compared with those available in the literature. Some new results with different parameters are also presented.  相似文献   

13.
The free vibration of laminated composite plates on elastic foundations is examined by using a refined hyperbolic shear deformation theory. This theory is based on the assumption that the transverse displacements consist of bending and shear components where the bending components do not contribute to shear forces, and likewise, the shear components do not contribute to bending moments. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second foundation parameter is zero. The equation of motion for simply supported thick laminated rectangular plates resting on an elastic foundation is obtained through the use of Hamilton’s principle. The numerical results found in the present analysis for free the vibration of cross-ply laminated plates on elastic foundations are presented and compared with those available in the literature. The theory proposed is not only accurate, but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

14.
In this paper, effect of random variation in system properties on bending response of geometrically linear laminated composite plates subjected to transverse uniform lateral pressure and thermal loading is examined. System parameters such as the lamina material properties, expansion of thermal coefficients, lamina plate thickness and lateral load are modeled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behavior of the composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by authors for the plate subjected to lateral loading is employed to obtain the second order response statistics (mean and variance) of the transverse deflection of the plate. Typical numerical results for the second order statistics of the transverse central deflection of geometrically linear composite plates with temperature independent and dependent material properties subjected to uniform temperature and combination of uniform and linearly varying temperature distribution are obtained for various combinations of geometric parameters, uniform lateral pressures, staking sequences and boundary conditions. The performance of the stochastic laminated composite model is demonstrated through comparison of mean transverse central deflection with those results available in literature and standard deviation of the deflection with an independent Monte Carlo simulation.  相似文献   

15.
This paper presents a semi-analytical approach to investigate wave propagation characteristics in functionally graded graphene reinforced piezoelectric composite plates. Three patterns of graphene platelets (GPLs) describe the layer-wise variation of material properties in the thickness direction. Based on the Reissner-Mindlin plate theory and the isogeometric analysis, elastodynamic wave equation for the piezoelectric composite plate is derived by Hamilton’s principle and parameterized with the non-uniform rational B-splines (NURBS). The equation is transformed into a second-order polynomial eigenvalue problem with regard to wave dispersion. Then, the semi-analytical approach is validated by comparing with the existing results and the convergence on computing dispersion behaviors is also demonstrated. The effects of various distributions, volume fraction, size parameters and piezoelectricity of GPLs as well as different geometry parameters of the composite plate on dispersion characteristics are discussed in detail. The results show great potential of graphene reinforcements in design of smart composite structures and application for structural health monitoring.  相似文献   

16.
The present paper is the continuation of earlier publications with stack of piezoelectric plates. This work is an author's idea of application for generating characteristics of piezoelectric systems. The presented program, called Piezo3D, allows for generation a single piezoelectric plate graphs as well as complex, free and bonded systems. An additional advantage is the ability to obtain the 3D graphs, in which the characteristics of the test graph can be based not only on frequency, but also on other parameters such as the thickness of the plate. The application is written in the numerical software "Matlab". (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.  相似文献   

18.
A new micromacromechanical model of unit cells is suggested. In this model, a 3D-braided composite plate can be a cell system, and the geometry of each cell strongly depends on its position in the cross section of the plate. Based on the Reddy higher-order shear deformation theory of plates and the general von Karman-type equations, analytical solutions for the dynamic response of simply supported 3D-braided rectangular plates resting on a two-parameter (Pasternak-type) elastic foundation and subjected to transverse dynamic loads are found by using the perturbation method. The numerical illustrations concern the effects of geometric parameters, fiber volume fraction, braiding angle, and foundation stiffness. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 6, pp. 861–880, November–December, 2008.  相似文献   

19.
Closed-form solutions for free vibration analysis of orthotropic plates are obtained in this paper based on two variable refined plate theory. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the natural frequency of orthotropic plates are investigated and discussed in detail.  相似文献   

20.
For the proper design of plate and shell composite structures with piezoelectric patches bonded to the surfaces of a host structure, appropriate finite elements are presented. The linear piezoelectric effect is taken into account so that the displacements and the electric potential serve as independent variables. The electric potential can be condensed on the element level and does not enter the system of equations. This condensation has the advantage of a more efficient calculation especially for dynamic problems. With dynamic examples the two formulations are compared with each other and with solutions from the literature, which prove the accuracy and the efficiency of the formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号