首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
采用密度泛函理论结合平板周期性模型研究了H2在δ-Pu(100)表面的吸附行为.结果表明,H2在该表面最稳定的吸附方式为洞位垂直吸附,吸附能为0.183eV,距离表面最近的H原子与表面垂直距离为0.378nm.吸附的H2分子的键长增加、H—H键伸缩振动频率的红移都不明显.只有极少量电子从第1层的Pu原子流向H2分子,吸附引起的表面功函增加也不明显.这说明δ-Pu(100)面分子态H2的吸附属于较弱的物理吸附.讨论了离解吸附的热力学可能性,H2分子的吸附趋向于离解成2个原子态H的吸附,离解后的H原子优先吸附于洞位,此时吸附为较强的化学吸附.  相似文献   

2.
采用密度泛函理论(DFT)和周期平板模型,研究两种WC(0001)表面的几何结构和表面能,并对Pt原子单层(PtML)在两种WC(0001)表面的高对称性吸附位上的吸附能和分离功进行计算.结果发现,终止于W原子的WC(0001)为最稳定的WC(0001)表面,Pt原子单层以hcp位的方式吸附于W终止的WC(0001)表面是PtML/WC(0001)体系最稳定的几何构型.在此基础上研究了CO分子和H原子分别在PtML/WC(0001)表面和具有相似表面结构的Pt(111)表面的吸附行为.在0.25 ML(monolayer)低覆盖度下,与在Pt(111)表面相比,在PtML/WC(0001)表面上的Pt—C间距明显拉长和CO分子吸附能减少,说明PtML/WC(0001)表面抗CO中毒能力比Pt(111)表面高;态密度分析进一步解释了CO分子与不同表面Pt原子的成键机理.在同一覆盖度下,H原子在PtML/WC(0001)表面的最大吸附能等于甚至略高于在Pt(111)表面的,表明Pt/WC对氢气氧化反应具有良好的催化活性,是一种很有前途的质子交换膜燃料电池(PEMFC)阳极催化剂.  相似文献   

3.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

4.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

5.
采用密度泛函理论方法,运用平板模型对噻吩分子在Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明,hcpA位的吸附最稳定,以bridgeB吸附最不稳定;噻吩吸附在表面上时,S原子向上翘起,4个C原子与边面Ni原子的作用更紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键的活泼性;噻吩以bridgeA吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而hcpA位吸附后噻吩分子轨道上电子的能量变稳定,分子并不活泼.  相似文献   

6.
一氧化碳分子在Pt/t-ZrO2(101)表面的吸附性质   总被引:2,自引:0,他引:2  
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO分子在完整与Pt负载的四方ZrO2(101)表面的吸附行为.结果表明:表面第二层第二氧位和表面第二桥位分别为CO分子和Pt原子在完整ZrO2(101)表面的稳定吸附位,且覆盖度为0.25ML(monolayer)时均为稳定吸附构型,吸附能分别为56.2和352.7kJ·mol-1.CO分子在负载表面的稳定吸附模式为C-end吸附,吸附能为323.8kJ·mol-1.考察了CO分子在负载表面吸附前后的振动频率、态密度和轨道电荷布居分析,并与CO分子和Pt原子在ZrO2表面的结果进行比较.结果表明,C端吸附CO分子键长为0.1161nm,与自由的和吸附在ZrO2表面后的CO相应值(0.1141和0.1136nm)相比伸长.吸附后C―O键伸缩振动频率为2018cm-1,与自由CO分子相比发生红移;吸附后CO带部分正电荷,电子转移以Pt5dCO2π的π反馈机理占主导地位.  相似文献   

7.
采用电荷自洽方法, 以嵌入原子簇Zn4O4为模型, 使用量子化学的密度泛函理论, 研究了二氧化碳在六方ZnO非极化的(1010)面的可能吸附态。计算表明, CO2垂直底物表面吸附, 氧原子只能与Zn原子配位, 并且吸附能为很弱的1.8 kJ/mol;吸附质分子平行于底物表面时, 得到了5种平衡吸附构型, 其中采用CZn配位和η2O, O二齿配位时, 吸附很弱, 经BSSE校正后的吸附能在8.8~6.6 kJ/mol。 采用η2C, O方式分别与O和Zn配位时, 吸附能为31.1 kJ/mol; C原子与表面O配位时计算得到了唯一的一个化学吸附态, 吸附能为139.6 kJ/mol, 与实验结果一致。  相似文献   

8.
吕存琴  凌开成  王贵昌 《催化学报》2009,30(12):1269-1275
 采用广义梯度近似 (GGA) 的密度泛函理论 (DFT) 并结合平板模型, 研究了 CH4 在清洁 Pd(111) 及 O 改性的 Pd(111) 表面发生 C朒 键断裂的反应历程. 优化了裂解过程中反应物、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及反应的活化能. 结果表明, CH4 采用一个 H 原子指向表面的构型在 Pd(111) 表面的顶位吸附, CH3 的最稳定的吸附位置为顶位, OH, O 和 H 的最稳定吸附位置均为面心立方. CH4 在清洁 Pd(111) 表面裂解的活化能为 0.97 eV, 低于它在 O 原子改性 (O 没有参与反应) 的 Pd(111) 表面的活化能 1.42 eV, 说明表面氧原子抑制了 CH4 中 C朒 键的断裂. 当亚表面 O 原子和表面 O 原子 (O 参与反应) 共同存在时, C朒 键断裂的活化能为 0.72 eV, 低于只有表层氧存在时的活化能 (1.43 eV), 说明亚表面的 O 原子对 CH4 分子的活化具有促进作用. CH4 在 O 原子改性的 Pd(111) 表面裂解生成 CH3 和 H, 以及生成 CH3 和 OH 的反应活化能分别为 1.42 和 1.43 eV, 说明 CH4 在 O 原子改性的 Pd(111) 表面发生这两种反应的难易程度相当.  相似文献   

9.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

10.
采用密度泛函理论中的广义梯度近似,计算了CO在α-U(001)表面的吸附、解离和扩散.结果表明:CO分子以CU3OU2构型化学吸附在α-U(001)表面,吸附能为1.78-1.99eV;吸附后表层U原子向上迁移,伴随着褶皱的产生;CO分子与表面U原子的相互作用主要是U原子的电子向CO分子最低空轨道2π*转移,以及CO2π*/5σ/1π-U6d轨道间杂化而生成新的化学键;CO解离吸附较分子吸附在能量上更为有利,h1(C)+h2(O)和h1(C)+h1(O)(h:空位)解离态吸附能分别为2.71和3.08eV;近邻三重穴位之间C、O原子的扩散能垒分别为0.57和0.14eV,预示O原子较C原子更易在U(001)表面扩散迁移.  相似文献   

11.
运用广义梯度密度泛函理论(Generalized Gradient Approximation,GGA)的PBE(Perdew-Burke-Ernzerh)方法结合周期性平板模型,研究了氯气分子和氯原子在CuCl(111)表面上的吸附。通过对不同吸附位和不同单层覆盖度下的吸附能和几何构型参数的计算和比较发现:氯气分子在CuCl(111)表面的吸附为解离吸附;单层覆盖度为0.50时的吸附构型为稳定的吸附构型;氯气分子平行吸附在CuCl(111)表面时最稳定,吸附能最大,达364.5 kJ·mol-1;伸缩振动频率的计算结果表明,吸附后的氯气分子的伸缩振动频率与自由氯气分子的伸缩振动频率相比,都发生了红移;布居分析结果表明整个吸附体系发生了由Cu原子向氯气分子的电荷转移。氯原子吸附的计算结果显示氯原子以穴位稳定的吸附在CuCl(111)表面。  相似文献   

12.
采用DMol3程序包中的GGA-PW91方法, 结合周期平板模型, 对CH3O和CO在Pd(111)表面的反应进行了系统研究. 计算结果表明, 吸附在Pd(111)表面顶位上的CO分子中C原子所带正电荷最多, 容易与亲核试剂反应, 化学吸附能稍低, 有利于在表面上移动发生亲电插入反应; CH3O 在Pd(111)表面fcc穴位吸附稳定, O原子上所带的负电荷较多, 易被亲电试剂进攻. 过渡态搜索表明, Pd(111)表面顶位上的CO与fcc穴位上CH3O反应生成CH3OOC的为放热反应, 反应能垒较低, 有利于偶联反应的进行.  相似文献   

13.
采用密度泛函理论方法,运用平板模型对噻吩分子在PtNi2/Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明:bridge-hollow-1位的吸附最稳定,但是bridge位吸附对噻吩的影响最大.噻吩吸附在表面上时,S原子向上翘起,C原子与表面Ni原子的作用比与Pt原子紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键和C—C键的活泼性.噻吩以bridge-hollow-1和bridge位吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而且除了C(1)—S键以外,环上C(1)—C(2)键活化程度也较好,而bridgehollow-2位吸附后噻吩分子中C(2)—C(2)键比较容易发生断裂.  相似文献   

14.
采用电荷自洽方法,以嵌入原子簇Zn4O4为模型,使用量子化学的密度泛函理论,研究了二氧化碳在六方ZnO非极化的(101^-0)面的可能吸附态。计算表明,CO2垂直底物表面吸附,氧原子只能与Zn原子配位,并且吸附能为很弱的1.8kJ/mol;吸附质分子平行于底物表面时,得到了5种平衡吸附构型,其中采用C-Zn配位和η^2-O,O二齿配位时,吸附很弱,经BSSE校正后的吸附能在8.8~6.6kJ/mol。采用η^2-C,O方式分别与O和Zn配位时,吸附能为31.1kJ/mol;C原子与表面O配位时计算得到了唯一的一个化学吸附态,吸附能为139.6kJ/mol,与实验结果一致。  相似文献   

15.
应用原子和表面簇合物相互作用的5参数Morse 势及由5参数Morse势组装推广的LEPS方法对H-W低指数表面吸附体系进行了研究, 并获得了全部临界点特性. 计算结果表明, 低覆盖度下, H原子优先吸附在W(100)面的内层吸附位二层桥位B', 获得156 meV的垂直振动频率, 随着覆盖度的增加, H原子稳定吸附在表层的五重洞位(二层顶位)、桥位及顶位. 内层吸附位的优先吸附, 对与其邻近的表面吸附位的临界点性质有一定影响. 在W(110)面上只存在三重洞位的稳定吸附态, 垂直振动频率为151 meV. 在W(111)面上存在三种稳定吸附态, 子表面吸附位H1, 桥位B'和顶位T, 分别获得104, 200, 259 meV的垂直振动频率. 在低覆盖度下, H原子优先吸附在子表面吸附位H1.  相似文献   

16.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附.TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的脱附温度在170 K.XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 e V.利用多层NO_2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997).TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+OH(a)=H_2O+HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO_2分子(2HCOO(a)=CO_2+HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中,Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+O(a)=H_2O+CO_2)和歧化反应(2HCOO(a)=CO_2+HCOOH)生成气相CO_2,H_2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+OH(a)=H_2O+HCOO(a))和216 K的羟基并和反应(OH(a)+OH(a)=H_2O+O(a)).  相似文献   

17.
用密度泛函理论(DFT)研究了Cu(001)表面CO吸附单层的表面性质. 总能计算结果表明, 顶位结构总能最低, 相应位置的CO分子吸附能最大. 谷位吸附结构的衬底原子层间距相对于清洁表面的膨胀量约为10%, 从而导致了谷位吸附的不稳定性. 在顶位、桥位和谷位三个吸附结构中, C和Cu原子之间的距离dC-Cu分别为0.1868、0.1975和0.2231 nm, 对应的CO分子键长为0.1154、0.1165 和0.1175 nm. 计算了CO分子的态密度(DOS). 结果表明, 衬底与分子的作用主要是分子和金属轨道的杂化. 在吸附过程中, 电荷主要从碳原子的s轨道向p轨道转移. 在顶位、桥位和谷位吸附结构中, 每个碳原子内电荷的转移量分别为0.45e、0.54e 和0.55e. 衬底向吸附分子的电荷转移量不大, CO 吸附分子层为一绝缘层.  相似文献   

18.
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的"鸿沟"也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源.CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化CO氧化反应理论计算方面的研究工作.一般认为,CO在纳米金表面的吸附是CO氧化反应的初始步骤.密度泛函理论研究表明,CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低,CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现,CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强CO吸附,而位于侧位的配位金原子则弱化CO吸附,这显然削弱了CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表面上O_2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在Au/Ti O_2界面及CeO_2表面上O_2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上O_2很难直接解离形成原子氧,因此反应机理可能是吸附的CO先与O_2反应形成了一种CO–O_2中间体,然后解离形成CO_2.在Au/TiO_2和Au/Ce O_2催化剂上CO催化氧化机理争议很大,均有计算结果支持LH机理和M–v K机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及Au/Ti5c模型等.我们也提出了一种独特的双直线O–Au–O模型来理解Au/TiO_2或Au/CeO_2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

19.
采用第一性原理方法和平板模型对CO分子在TiC(001)表面的吸附构型和电子结构进行了详细研究. 结果表明, CO分子倾向于采用C端吸附在表层Ti原子上方. 对于该吸附方式, 计算得到的吸附能、CO各电子态所处能级位置以及C—O键伸缩振动频率的红移值均与实验观测结果相吻合. 由能带结构和Mvlliken布居分析结果可知, 当采用C端吸附时, CO的5σ和2π鄢态受到底物影响最为显著, 尤其是C端的桥位吸附方式. 此外, 还进一步对底物表面态在CO吸附过程中的作用进行了探讨.  相似文献   

20.
欧阳润海  李微雪 《催化学报》2013,34(10):1820-1825
采用密度泛函理论研究了CO气氛对FeO(111)/Ru(0001)负载Au原子吸附位、电荷及其稳定性的影响. 首先考察了FeO(111)单层薄膜在Ru(0001)表面上的界面结构. 研究发现,表面莫尔超晶胞内的HCP区域有最小的Fe-O层间距(rumpling),且Fe和O原子均与衬底Ru形成化学键. Au原子在FeO/Ru(0001)上最稳定的吸附在HCP区域的Fe-bridge位. 其中,Au原子诱导两个Fe原子从O原子层的下面翻转到其上面,形成两个Au-Fe键,且Au带负电. 当把体系暴露在CO气氛下后,CO能诱导Au原子从原来最稳定的Fe-bridge位转移到其邻近的O-top位,伴随着Au的电荷从负变到正,形成非常稳定的Au+-CO羰基物. 结果表明,反应气氛对负载金属催化剂的化学状态及其稳定性的影响很大; 同时也强调了反应条件下催化剂原位表征的重要性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号