首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
针对薄壁圆筒壳结构轴压屈曲载荷的缺陷敏感性以及真实几何缺陷的不确定性,提出一种基于实测缺陷数据和极大熵原理的初始缺陷建模与屈曲载荷预测方法。首先,将初始几何缺陷视为二维随机场,并利用实测缺陷数据和Karhunen-Loève展开法将初始缺陷的随机场建模转化为随机向量的建模;其次,利用极大熵方法确定随机向量的概率分布;最后,基于所构建的初始缺陷随机模型,利用MCMC抽样方法和确定性屈曲分析方法,进行随机屈曲分析并给出基于可靠度的屈曲载荷折减因子。数值算例表明,与直接假设随机场相关结构的方法相比,本文方法的结果是对薄壁圆筒壳屈曲载荷的一个更无偏估计。  相似文献   

2.
为了提高加筋圆柱壳结构的承载能力,提出了一种新型的非均匀加筋圆柱壳结构设计方案,其中加筋圆柱壳筋条体系采用非均匀布置的方式。本文基于非线性显式动力学方法对非均匀加筋圆柱壳进行了稳定性分析,得到了壳体完善结构和缺陷结构的承载能力。研究结果表明:在不改变结构质量的情况下,非均匀加筋圆柱壳结构以降低壳体两端刚度和增强壳体中部刚度的方式来避免壳体结构中部率先发生屈曲失稳,从而提高了薄壁结构的承载能力。此外,非均匀加筋圆柱壳结构在抵抗几何缺陷方面表现出更为优异的力学性能,具有更低的缺陷敏感性。基于此,本文构造了低缺陷敏感性的非均匀加筋圆柱壳优化模型,并应用算例证明了该优化模型的实用性以及该结构在工程中的适用性。  相似文献   

3.
加筋薄壳结构分析与优化设计研究进展   总被引:2,自引:0,他引:2  
伴随装备大型化和承载重型化等发展趋势,装备中加筋薄壳结构尺寸越来越大,成型工艺与结构细节也越来越复杂,对结构优化设计的精细程度、新型轻质结构发现和力学性能数值预测精度提出了更高的要求,给复杂板壳非线性分析模型、优化问题的数学建模和求解算法带来新的挑战。本文从加筋壳稳定性分析方法、折减因子确定方法以及考虑几何缺陷的加筋壳设计方法三个方面进行综述,介绍国内外相关研究进展。  相似文献   

4.
层状岩体顺层滑动但却存在反倾的后缘结构面的边坡稳定性研究尚未见到具体讨论。本文采用了数值模拟方法对锦屏一级水电站引渠内侧边坡的稳定性进行了分析,通过结构面参数折减法,求得该边坡稳定性系数为1.191,后端岩体对前端不稳定体不存在推力。通过数值分析方法和极限平衡法对结构面相关参数的敏感性进行了分析对比,对比表明采用参数折减法的数值分析方法结果可靠。本文为类似复杂岩体边坡稳定性判定提供参考。  相似文献   

5.
板钢结构承载力分析最终可化简为对一任意边界的矩形板在面内荷载作用下的极限承载力分析.从含初始弯曲的大挠度方程出发,以板厚度的折减量为摄动参数,将残余应力考虑成等效荷载,根据实用板与理想板的比较,得出板的厚度折减量和板的极限承载力方程.通过与非线性有限元方法和已有试验数据的验证分析,表明折减厚度法适用范围广、安全、精度高,可作为非线性有限元方法的补充,大大简化了结构极限承载力分析的复杂性.  相似文献   

6.
为了对加筋圆柱壳进行面向低缺陷敏感度的结构设计,针对一个直径为3m 的正置正交加筋圆柱壳,基于显式后屈曲数值分析,研究了预制不同幅度的内凹、外凸双曲母线形状设计的加筋圆柱壳轴压临界荷载对初始模态缺陷的敏感性。结果表明:外凸双曲母线形状可在幅度为20mm时提高含缺陷结构的轴压临界荷载,可达6.6%,表现为对缺陷的低敏感性;内凹双曲母线则可在幅度为-10mm时小幅提高完善结构的轴压临界荷载,可达1.7%;当加筋圆柱壳应用于运载火箭的燃料贮箱时,燃料加注会升高贮箱内压,因此可通过内压控制形成外凸形状来降低结构的缺陷敏感性。  相似文献   

7.
研究了动载作用下含有不确定初始几何缺陷壳的动态屈曲问题.给出了不确定初始几何缺陷在椭球描述和区间描述下,壳的动态响应和安全因子的界限估计.从数学证明和数值算例两方面,讨论了基于不确定性初始几何缺陷两种描述的凸模型方法和区间分析方法所得壳动态响应及安全因子的界限的关系,为判断壳的动态屈曲失效提供了依据.  相似文献   

8.
单层网壳结构是缺陷敏感结构,初始几何缺陷不同对"网壳截面优化结果"有显著影响,该文研究了网壳杆件截面取值与缺陷分布、结构极限承载力之间的关系.结果表明:经截面优化设计的网壳结构最不利应力最早并且一直出现在初始几何缺陷较大处;优化寻优结果与初始几何缺陷分布有直接关系,增大缺陷较大处杆件截面能显著提高结构承载力;由于缺陷随机分布,经截面优化设计的网壳结构须校核其在不同缺陷下的稳定承载力以确保结构安全.  相似文献   

9.
基于非线性弹簧元数值分析模型,建立了横向荷载作用下原状软粘土中插入式大圆柱壳结构的最优化设计数学模型,从中可以求得多工况荷载组合作用下,结构最佳受力的圆柱壳最佳尺度匹配.采用Monte Carlo 方向探索随机行走法作为最优化方法,对通用有限元软件ANSYS进行了优化技术的再开发,基于FORTRAN与ANSYS软件平台联合构建适合薄壁圆柱壳结构自身特殊问题分析的优化过程.算例表明此优化技术是可行有效的,结构经优化设计后相对于原设计,受力条件更优,材料用量有所节省.  相似文献   

10.
新一代航天装备的主承力薄壁舱段在追求极致轻量化的同时,还具有更高的刚度和抗屈曲等设计指标.传统结构形式和设计方法难以满足轻质高承载的设计要求.为此,本文提出了一种薄壁结构多层级并发加筋拓扑优化方法,通过构建主层级稀疏加筋和次层级密集点阵增强结构整体和局部力学性能,扩展结构设计空间,有效提升材料利用率.其中,主层级加筋布局通过变密度拓扑优化方法获得,次层级点阵构型通过基于改进的渐进均匀化方法提出的两种设计方法获得,并基于材料插值模型,建立了多层级并发加筋拓扑优化框架,实现在一次拓扑优化求解中同时获得主层级加筋布局和次层级单胞拓扑构型.基于上述方法,本文分别给出了考虑结构刚度和稳定性设计需求的优化算例,并与传统单层级加筋拓扑优化进行了对比.结果 表明,多层级并发加筋方法可以根据承载边界和设计目标寻找优化的结构形式,且在相同质量下,其优化构型相比传统单层级拓扑优化结果表现出更高的承载性能,证明了本方法在薄壁结构设计上的优势.  相似文献   

11.
12.
对于受轴向冲击载荷作用的薄壁圆管动态响应的相似律问题,由于圆管的薄壁特性导致厚度无法与高度和半径按相同的比例进行结构缩放,从而产生模型的几何畸变,此时传统的相似律已无法描述原型与畸变模型之间的动态响应规律。基于薄壁圆管轴向冲击问题的控制方程,通过能量守恒和量纲分析,推导了考虑几何畸变条件下轴向冲击载荷作用的理想弹塑性薄壁圆管动态响应的相似律。通过在给定应变与应变率区间上建立比例模型预测的流动屈服应力与原型流动屈服应力的最佳逼近关系,将几何畸变相似律进一步推广至包含应变率和应变硬化的材料。通过数值方法验证了提出的几何畸变模型相似律的适用性。分析结果表明,提出的考虑厚度畸变的受轴向冲击薄壁圆管的相似律可用于预测原型结构的冲击动态响应,并显著降低比例模型与原型结构平均载荷和能量的偏差。  相似文献   

13.
Stability of imperfect elastic cylindrical shells which are subjected to uniform axial compression is analyzed by using the finite element method. Multiple interacting localized axisymmetric initial geometric imperfections, having either triangular or wavelet shapes, were considered. The effect of a single localized geometric imperfection was analyzed in order to assess the most adverse configuration in terms of shell aspect ratios. Then two or three geometric imperfections of a given shape and which were uniformly distributed along the shell length were introduced to quantify their global effect on the shell buckling strength. It was shown that with two or three interacting geometric imperfections further reduction of the buckling load is obtained. In the ranges of parameters that were investigated, the imperfection wavelength was found to be the major factor influencing shell stability; it is followed by the imperfection amplitude, then by the interval distance separating the localized imperfections. In a wide range of parameters this last factor was recognized to have almost no effect on buckling stresses.  相似文献   

14.
The sensitivity of laminated conical shells to imperfection is considered, via the initial post-buckling analysis, on the basis of three different shell theories: Donnell’s, Sanders’, and Timoshenko’s. Unlike isotropic conical shells or laminated cylindrical shells, in the case of laminated conical shells the thickness and the material properties vary with the shell coordinates, which complicates the problem considerably. The main objective of the study is to investigate the influence of the variation of the stiffness coefficients on the buckling behavior and on the imperfection sensitivity of laminated conical shells. It is felt that by finding the various parameters that influence the shell’s imperfection sensitivity, it is possible to improve the behavior of the whole structure.A special Level-1 computer code ISOLCS (Imperfection Sensitivity of Laminated Conical Shells) had been developed. ISOLCS calculates the classical buckling load and the imperfection sensitivity via Koiter’s theory of laminated conical shells with consideration to the variation of the material properties in the shell’s coordinates. The range of validity of the Level-1 predictions by ISOLCS is verified by the Level-3 code STAGS-A.  相似文献   

15.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

16.
Buckling and imperfection sensitivity are the primary considerations in analysis and design of thin shell structures. The objective here is to develop accurate and efficient capabilities to predict the postbuckling behavior of shells, including imperfection sensitivity. The approach used is based on the Lyapunov–Schmidt–Koiter (LSK) decomposition and asymptotic expansion in conjunction with the finite element method. This LSK formulation for shells is derived and implemented in a finite element code. The method is applied to cylindrical and spherical shells. Cases of linear and nonlinear prebuckling behavior, coincident as well as non-coincident buckling modes, and modal interactions are studied. The results from the asymptotic analysis are compared to exact solutions obtained by numerically tracking the bifurcated equilibrium branches. The accuracy of the LSK asymptotic technique, its range of validity, and its limitations are illustrated.  相似文献   

17.
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.  相似文献   

18.
The present experimental study aims at providing better inputs for improvement of the buckling load predictions of stiffened cylindrical shells subjected to combined loading. The work focuses on two main factors which considerably affect the combined buckling load of stiffened shells, namely geometric imperfections and boundary conditions. Six shells with nominal simple supports were tested under various combinations of axial compression and external pressure. The vibration correlation technique is employed to define the real boundary conditions. The geometric imperfections of the integrally stiffened shells are measured in the present experiments in situ and are used as inputs to a multimode analysis which yields the corresponding “knockdown” factor for various combinations of loading. Thus, when employing the repeated buckling procedure for obtaining interaction curves, each point on the curve is adjusted (using the multimode analysis) for the measured “new” surface of the shell and this results in more realistic interaction curves. The geometrical imperfections of the preloaded shells can also serve as an input to the International Imperfection Data Bank for future studies on the correlation between the manufacturing method of the shell and their geometric imperfections.  相似文献   

19.
Nonlinear buckling optimization is introduced as a method for doing laminate optimization on generalized composite shell structures exhibiting nonlinear behaviour where the objective is to maximize the buckling load. The method is based on geometrically nonlinear analyses and uses gradient information of the nonlinear buckling load in combination with mathematical programming to solve the problem. Thin-walled optimal laminated structures may have risk of a relatively high sensitivity to geometric imperfections. This is investigated by the concepts of “worst” imperfections and an optimization method to determine the “worst” shape imperfections is presented where the objective is to minimize the buckling load subject to imperfection amplitude constraints. The ability of the nonlinear buckling optimization formulation to solve the laminate problem and determine the “worst” shape imperfections is illustrated by several numerical examples of composite laminated structures and the application of both formulations gives useful insight into the interaction between laminate design and geometric imperfections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号