首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
富勒烯配合物的制备及其性质的研究是目前富勒烯化学最为活跃的研究领域之一[1],人们正致力于探索富勒烯各类衍生物的结构与性质之间的依赖关系,以期合成出具有特殊性能的富勒烯配合物,为富勒烯的实际开发应用奠定基础。本文首次合成C60[RuHCl(CO)(PPh3)]3配合物,采用元素分析、红外光谱、电子光谱进行鉴定和表征,并推测了其结构。1 实验部分1.1 C60[RuHCl(CO)(PPh3)]3的合成合成按下列反应进行:RuCl3+3PPh3+HCHO→RuHCl(CO)(PPh3)3RuHCl(…  相似文献   

2.
过渡金属—C60配合物的合成及结构的研究是C60化学非常重要的一个组成部分,这对于发展C60化学及新型功能材料的开发具有很大意义.关于这方面的研究工作近年已有一些报道〔1~3〕.Hawkins等关于(tBuC6H5N)2OsO4(C60)的合成及单...  相似文献   

3.
利用酯基锡与缺位Keggin结构杂多阴离子PW9O9-34反应,合成了6种新的杂多阴离子有机金属配合物M9[(R′OOCCHR″CH2SnOH2)3(PW9O34)2]·xH2O(M=(CH3)4N+,K+;R′=CH3_,CH3CH2_;R″=H,CH3_),通过元素分析、IR光谱、紫外电子光谱、1HNMR、31PNMP、183WNMR和TGA-DSC热分析等测试手段对标题配合物进行了表征和性质研究,确定该系列配合物为A-β-PW9型夹心配合物结构.  相似文献   

4.
铜(I)配合物的研究在金属酶的化学模拟和配合物结构及反应性能等研究方面具有重要的理论和实际意义[1]。但由于铜(I)配合物不稳定,且在多数有机溶剂中的溶解度较小,铜(I)配合物的合成比较困难。我们在铜(I)配合物的合成方面积累了一些经验,合成了一系列含有三苯基膦和氮杂环配体的铜(I)配合物[CuX(PPh3)L]n[2~4](n=1,X=I,L=1,10phen;n=2,X=Br,I,L=C9H7N),并对它们的结构进行了研究。本文报道一个类似的新配合物[CuI(PPh3)(bpy)](I)的合成…  相似文献   

5.
合成了5个含有金属铁的环醚Fe(CO)3L(L1=Ph2P(CH2CH2O)2CH2CH2PPh2,L2=Ph2P(CH2CH2O)4CH2CH2PPh2,L3=OPh[(OCH2CH2)PPh2]2,L4=OPh[OCH2CH2)2PPh2]2)和[Fe(CO3)]2L5(L5=[Ph2PCH2CH2OCH2CH2PPh2]2).对它们进行了元素分析,并用红外光谱和核磁共振谱进行了结构表征.用KI+醚类为催化剂,催化二氧化碳与环氧乙烷反应生成碳酸乙烯酯,反应选择性大于96.9%.催化机理为碱催化,催化剂的活性受醚的影响.能和K+形成稳定配合物的醚可提高催化剂的活性.含金属铁的环醚和普通醚类相似,可以和钾离子作用,提高阴离子的亲核催化性能.  相似文献   

6.
许多化学工作者对单齿膦配体(PPh3,PBun3,PEt2Ph,P(OEt)3,P(OC6H5)3)与母体簇合物FeCo2(CO)9(μ3-S)的取代反应进行过详细研究[1-3],但对双齿膦配体与母体簇合物的取代反应研究报导较少.Aime[4]合成了含双齿膦配体的簇合物FeCo2(CO)7(μ3-S)(Ph2PCH2PPh2),并用13CNMR和IR光谱方法对其结构进行了表征.到目前为止,含双齿膦配体的该类簇合物的晶体与分子结构还未见报导.RosannaRossetti[2]通过研究母体簇合物与…  相似文献   

7.
采用1HNMR谱研究了通式为〔M3ⅢO(OOCR)6L3〕+(M=Cr,Fe,Mn;R=CH3,C2H5,CH2NH2;L=C5H5N,H2O)的一系列氧心三核过渡金属配合物,主要考察其1H化学位移随金属、配体、温度、溶剂等因素变化而变化的规律。结果表明,骨架金属对化学位移的影响最大,M3O中的3个金属离子间存在反铁磁交换相互作用。对Mn配合物中顺磁中心对化学位移和线宽的影响机制的研究表明,其1H各向同性位移主要由接触作用贡献  相似文献   

8.
合成了两个新奇的配合物Ti[O-Ph-C(CH2CH3)2-Cp]2和Zr[O-Ph-C(CH2CH3)2-Cp]2,对合成的配合物进行了元素分析,IR,1HNMR和MS表征。  相似文献   

9.
铜(Ⅰ)配合物[Cu(C8H4O2F3S)(PPh3)2]合成、性质、晶体结构及反应机理的探讨王冬梅杨瑞娜侯益民金斗满*(河南化学研究所,郑州450003)关键词:铜粉三苯基膦晶体结构铜(Ⅰ)配合物在生理上是绝对重要的。有文献报道铜(Ⅰ)—亚酰配合物...  相似文献   

10.
陈忠  张琳娜 《结构化学》1999,18(3):227-231
采用^1H NMR谱研究了通式为(M3^ⅢO(OOCR)6L3)^+(M=Cr,Fe,Mn;R=CH3,C2H5,CH2NH2;L=C5H5N,H2O)的一系列氧心三核过渡金属配合物,主要考察其^1H化学位移随金属、配体、温度、溶剂等因素变化而变化的规律。结果表明,骨架金属对化学位移的影响最大,M3O中的3个金属离子间存在反铁磁变换相互作用。对Mn配合物中顺磁中心对化学位移和线宽的影响机制的研究表  相似文献   

11.
The complexes Ru(CO)2L2(AL-2H) (AL = alizarin; L = PPh3, PCyc3, PBu3, P(m-NaSO3C6H4)3), Ru(CO)(dppe)(PBu3)(AL-2H), and RuH(CO)L2(AL-H) (L = PPh3, PCyc3), and Ru(CO)2L2(AR-2H) (AR = anthrarobin; L = PBu3) were prepared by reactions of Ru3(CO)12, L, and AL, and the complexes RuH(CO)(PPh3)2(AL-H), RuH(CO)(PPh3)2(QN-H) (QN = quinizarin), and RuH(CO)(PPh3)2(LQN-H) (LQN = leucoquinizarin) are prepared by reactions of RuH2(CO)(PPh3)3 with AL or QN. The AL-2H and AR-2H ligands act as 1,2-catecholates, whereas the AL-H, QN-H, LQN-H ligands are 1,9-o-acylphenolate ligands. RuH(CO)(PPh3)2(AL-H) is characterized by X-ray crystallography. The electrochemistry of these complexes is examined, and the semiquinone complexes [Ru(CO)2L2(AL-2H)]+ (L = PPh3, PCyc3, PBu3) and [Ru(CO)(dppe)(PBu3)(AL-2H)]+ are generated by chemical oxidation and were characterized by EPR and IR spectroscopy. The photophysical properties are also reported.  相似文献   

12.
The ruthenium hydride complex RuH(2)(CO)(PPh(3))(3) was found to be an effective catalyst for the cycloaddition reactions of terminal alkynes and azides. In the presence of RuH(2)(CO)(PPh(3))(3), various azides reacted with a range of terminal alkynes to produce 1,4-disubstituted 1,2,3-triazoles with 100% selectivity and moderate to excellent yields.  相似文献   

13.
η2-C60[RhCl(CO)(PPh3)2]配合物的合成与表征   总被引:2,自引:0,他引:2  
从1985年Smalley等[1]发现C60等富勒烯至1996年富勒烯的发现者获诺贝尔化学奖期间, 在化学、 材料、 物理等领域形成了富勒烯的研究热潮[2~5]. 现在科学工作者正以较大的注意力投向富勒烯的化学修饰, 研究富勒烯各类衍生物的结构与性能之间内在联系规律, 以期望在开发应用方面取得突破性进展, 为此也十分重视对具有特殊组成与结构的富勒烯衍生物的研究. 本文首次合成出η2-C60[RhCl(CO)(PPh3)2]配合物, 并对其结构进行了表征.  相似文献   

14.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

15.
The complexation of di-(2-pyridylmethyl)amine to RuHCl(PPh(3))(3) affords the salt [RuH{κ(3)N-fac-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2)]Cl. Reaction with potassium tert-butoxide at room temperature yields the unusual ruthenaziridine complex RuH{κ(3)C(alk)NN(py)-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2), where the central nitrogen atom, adjacent alkyl carbon, and pyridine arm coordinate to the metal, leaving the second pyridine arm uncoordinated. Surprisingly, heating of this ruthenaziridine complex with concomitant H(2) formation affords the ruthenium azaallyl complex RuH(κ(3)N-1,3-di-(2-pyridyl)-2-azaallyl)(PPh(3))(2). This is a rare example of a 4d metal complex containing the azaallyl ligand. X-Ray crystal structures and NMR characterization of all three compounds are presented herein.  相似文献   

16.
Toluene solutions of C(60) react upon UV irradiation with Fe(2)S(2)(CO)(6) to give C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-6. C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-3 have been isolated and characterized. Crystallographic studies of C(60)S(2)Fe(2)(CO)(6) show that the S-S bond of the Fe(2) reagent is cleaved to give a dithiolate with idealized C(2)(v)() symmetry. The addition occurred at a 6,6 fusion, and the metrical details show that the Fe(2) portion of the molecule resembles C(2)H(4)S(2)Fe(2)(CO)(6). IR spectroscopic measurements indicate that the Fe(2)(CO)(6) subunits in the multiple-addition species (n > 1) interact only weakly. UV-vis spectra of the adducts show a shift to shorter wavelength with addition of each S(2)Fe(2)(CO)(6) unit. Photoaddition of the phosphine complex Fe(2)S(2)(CO)(5)(PPh(3)) to C(60) gave C(60)[S(2)Fe(2)(CO)(5)(PPh(3))](n)(), where n = 1-3. (31)P{(1)H} NMR studies show that the double adduct consists of multiple isomers. Photoaddition of Fe(2)S(2)(CO)(6) to C(70) gave a series of adducts C(70)[S(2)Fe(2)(CO)(6)](n)() where n = 1-4. HPLC analyses show one, four, and three isomers for the adducts, respectively.  相似文献   

17.
At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effects all point to a mechanism involving irreversible formation of a transient dihydrogen ruthenium complex B, loss of H(2) to give unsaturated ruthenium complex A, and trapping by PPh(3) to give 6. DFT calculations showed that a mechanism involving direct transfer of a hydrogen from the CpOH group to form B had too high a barrier to be considered. DFT calculations also indicated that an alcohol or the CpOH group of 3 could provide a low energy pathway for formation of B. PGSE NMR measurements established that 3 is a hydrogen-bonded dimer in toluene, and the first-order kinetics indicate that two molecules of 3 are also involved in the transition state for hydrogen transfer to form B, which is the rate-limiting step. In the presence of ethanol, hydrogen loss from 3 is accelerated and RuD/OH exchange occurs 250 times faster than in its absence. Calculations indicate that the transition state for dihydrogen complex formation involves an ethanol bridge between the acidic CpOH and hydridic RuH of 3; the alcohol facilitates proton transfer and accelerates the reversible formation of dihydrogen complex B. In the presence of EtOH, the rate-limiting step shifts to the loss of hydrogen from B.  相似文献   

18.
The title complex [RuH(CO)(PPh3)2(4-ClPhNHCS2)]·C6H14 has been prepared and characterized by X-ray diffraction analysis.It crystallizes in the triclinic system,space group P1 with a = 11.0817(2),b = 14.3889(2),c = 15.2136(2) ,α = 71.018(1),β = 74.911(1),γ = 85.146(1)°,V = 2214.86(6) 3,Z = 2,Mr = 900.4,Dc = 1.350 g/cm3,Mr = 900.40,μ(MoKα) = 0.616 mm-1,F(000) = 926,S = 1.016,the final R = 0.0478 and wR = 0.0947 for 6828 observed reflections with I > 2σ(I) and 505 variables.The molecular structure of 1 consists of one neutral complex [RuH(CO)(PPh3)2(4-ClPhNHCS2)] and one hexane solvent molecule.The geometry around ruthenium is pseudo-octahedral with two trans-binding PPh3 ligands and one chelating bidentate 4-ClPhNHCS2- ligand via two sulfur atoms.The average Ru-S,Ru-P and Ru-H bond lengths are 2.4824(8),2.3495(8) and 1.71(2),respectively.The electrochemical properties of 1 have been studied in CH2Cl2 solution by cyclic voltammetry.  相似文献   

19.
The syntheses of Ir(I) and Ir(III) complexes incorporating the electron-withdrawing pincer ligand (1,3-C(6)H(4)(CH(2)P(CF(3))(2))(2)) ((CF(3))PCPH) with (PPh(3))(3)Ir(CO)H and subsequent chemistry are reported. Under ambient conditions, reaction of 1 equiv. (CF(3))PCPH with (PPh(3))(3)Ir(CO)H gave the mono-bridged complex [Ir(CO)(PPh(3))(2)(H)](2)(μ-(CF(3))PCPH) (1). Reaction of (PPh(3))(3)Ir(CO)H with excess (CF(3))PCPH and MeI gave the doubly-bridged complex [Ir(CO)(PPh(3))(H)](2)(μ-(CF(3))PCPH)(2) (2), whereas the tetrameric oligomer [Ir(CO)(PPh(3))(H)](4)(μ-(CF(3))PCPH)(4) (2-sq) was obtained from a 1:1 ligand:metal mixture in benzene in the presence of excess MeI. At higher temperatures (165 °C) the reaction of (CF(3))PCPH with (PPh(3))(3)Ir(CO)H afforded the 5-coordinate Ir(I) complex ((CF(3))PCP)Ir(CO)(PPh(3)) (3). Complex 3 shows mild catalytic activity for the decarbonylation of 2-naphthaldehyde in refluxing diglyme (162 °C).  相似文献   

20.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号