首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高岳林  张博 《计算数学》2020,42(2):207-222
本文旨在针对线性比式和规划这一NP-Hard非线性规划问题提出新的全局优化算法.首先,通过引入p个辅助变量把原问题等价的转化为一个非线性规划问题,这个非线性规划问题的目标函数是乘积和的形式并给原问题增加了p个新的非线性约束,再通过构造凸凹包络的技巧对等价问题的目标函数和约束条件进行相应的线性放缩,构成等价问题的一个下界线性松弛规划问题,从而提出了一个求解原问题的分支定界算法,并证明了算法的收敛性.最后,通过数值结果比较表明所提出的算法是可行有效的.  相似文献   

2.
When the follower's optimality conditions are both necessary and sufficient, the nonlinear bilevel program can be solved as a global optimization problem. The complementary slackness condition is usually the complicating constraint in such problems. We show how this constraint can be replaced by an equivalent system of convex and separable quadratic constraints. In this paper, we propose different methods for finding the global minimum of a concave function subject to quadratic separable constraints. The first method is of the branch and bound type, and is based on rectangular partitions to obtain upper and lower bounds. Convergence of the proposed algorithm is also proved. For computational purposes, different procedures that accelerate the convergence of the proposed algorithm are analysed. The second method is based on piecewise linear approximations of the constraint functions. When the constraints are convex, the problem is reduced to global concave minimization subject to linear constraints. In the case of non-convex constraints, we use zero-one integer variables to linearize the constraints. The number of integer variables depends only on the concave parts of the constraint functions.Parts of the present paper were prepared while the second author was visiting Georgia Tech and the University of Florida.  相似文献   

3.
An application in magnetic resonance spectroscopy quantification models a signal as a linear combination of nonlinear functions. It leads to a separable nonlinear least squares fitting problem, with linear bound constraints on some variables. The variable projection (VARPRO) technique can be applied to this problem, but needs to be adapted in several respects. If only the nonlinear variables are subject to constraints, then the Levenberg–Marquardt minimization algorithm that is classically used by the VARPRO method should be replaced with a version that can incorporate those constraints. If some of the linear variables are also constrained, then they cannot be projected out via a closed-form expression as is the case for the classical VARPRO technique. We show how quadratic programming problems can be solved instead, and we provide details on efficient function and approximate Jacobian evaluations for the inequality constrained VARPRO method.  相似文献   

4.
1.IntroductionInthispaper,weconsiderthefollowingnonlinearprogr~ngproblemwherec(x)=(c,(x),c2(2),',We(.))',i(x)andci(x)(i=1,2,',m)arerealfunctions*ThisworkissupPOrtedbytheNationalNaturalScienceFOundationofChinaandtheManagement,DecisionandinformationSystemLab,theChineseAcademyofSciences.definedinD={xEReIISx5u}.Weassumethath相似文献   

5.
在本文中,我们提出了双凹规划问题和更一般的广义凹规划问题。我们给出了双凹规划问题的整体最优性条件,并构造了一个有限终止外逼近算法。  相似文献   

6.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

7.
This paper is concerned with a portfolio optimization problem under concave and piecewise constant transaction cost. We formulate the problem as nonconcave maximization problem under linear constraints using absolute deviation as a measure of risk and solve it by a branch and bound algorithm developed in the field of global optimization. Also, we compare it with a more standard 0–1 integer programming approach. We will show that a branch and bound method elaborating the special structure of the problem can solve the problem much faster than the state-of-the integer programming code.  相似文献   

8.
张博  高岳林 《计算数学》2022,44(2):233-256
基于对p-1维输出空间进行剖分的思想,提出了一种求解线性比式和问题的分枝定界算法.通过一种两阶段转换方法得到原问题的一个等价问题,该问题的非凸性主要体现在新增加的p-1个非线性等式约束上.利用双线性函数的凹凸包络对这些非线性约束进行凸化,这就为等价问题构造了凸松弛子问题.将凸松弛子问题中的冗余约束去掉并进行等价转换,从而获得了一个比凸松弛子问题规模更小、约束更少的线性规划问题.证明了算法的理论收敛性和计算复杂性.数值实验表明该算法是有效可行的.  相似文献   

9.
This paper is concerned with the development of an algorithm to solve continuous polynomial programming problems for which the objective function and the constraints are specified polynomials. A linear programming relaxation is derived for the problem based on a Reformulation Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be included in the original problem, and subsequently linearizes the resulting problem by defining new variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in the context of a proposed branch and bound scheme, which is proven to converge to a global optimal solution. A numerical example is presented to illustrate the proposed algorithm.  相似文献   

10.
In this paper, we present a novel sequential convex bilevel programming algorithm for the numerical solution of structured nonlinear min–max problems which arise in the context of semi-infinite programming. Here, our main motivation are nonlinear inequality constrained robust optimization problems. In the first part of the paper, we propose a conservative approximation strategy for such nonlinear and non-convex robust optimization problems: under the assumption that an upper bound for the curvature of the inequality constraints with respect to the uncertainty is given, we show how to formulate a lower-level concave min–max problem which approximates the robust counterpart in a conservative way. This approximation turns out to be exact in some relevant special cases and can be proven to be less conservative than existing approximation techniques that are based on linearization with respect to the uncertainties. In the second part of the paper, we review existing theory on optimality conditions for nonlinear lower-level concave min–max problems which arise in the context of semi-infinite programming. Regarding the optimality conditions for the concave lower level maximization problems as a constraint of the upper level minimization problem, we end up with a structured mathematical program with complementarity constraints (MPCC). The special hierarchical structure of this MPCC can be exploited in a novel sequential convex bilevel programming algorithm. We discuss the surprisingly strong global and locally quadratic convergence properties of this method, which can in this form neither be obtained with existing SQP methods nor with interior point relaxation techniques for general MPCCs. Finally, we discuss the application fields and implementation details of the new method and demonstrate the performance with a numerical example.  相似文献   

11.
Structural redundancies in mathematical programming models are nothing uncommon and nonlinear programming problems are no exception. Over the past few decades numerous papers have been written on redundancy. Redundancy in constraints and variables are usually studied in a class of mathematical programming problems. However, main emphasis has so far been given only to linear programming problems. In this paper, an algorithm that identifies redundant objective function(s) and redundant constraint(s) simultaneously in multi-objective nonlinear stochastic fractional programming problems is provided. A solution procedure is also illustrated with numerical examples. The proposed algorithm reduces the number of nonlinear fractional objective functions and constraints in cases where redundancy exists.  相似文献   

12.
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.  相似文献   

13.
In this paper, we develop a simplicial branch-and-bound algorithm for generating globally optimal solutions to concave minimization problems with low rank nonconvex structures. We propose to remove all additional constraints imposed on the usual linear programming relaxed problem. Therefore, in each bounding operation, we solve a linear programming problem whose constraints are exactly the same as the target problem. Although the lower bound worsens as a natural consequence, we offset this weakness by using an inexpensive bound tightening procedure based on Lagrangian relaxation. After giving a proof of the convergence, we report a numerical comparison with existing algorithms. T. Kuno was partially supported by the Grand-in-Aid for Scientific Research (C) 17560050 from the Japan Society for the Promotion of Sciences.  相似文献   

14.
In this paper, we present a new extreme point algorithm to solve a mathematical program with linear complementarity constraints without requiring the upper level objective function of the problem to be concave. Furthermore, we introduce this extreme point algorithm into piecewise sequential quadratic programming (PSQP) algorithms. Numerical experiments show that the new algorithm is efficient in practice.  相似文献   

15.
Recently the authors have proposed a homogeneous and self-dual algorithm for solving the monotone complementarity problem (MCP) [5]. The algorithm is a single phase interior-point type method; nevertheless, it yields either an approximate optimal solution or detects a possible infeasibility of the problem. In this paper we specialize the algorithm to the solution of general smooth convex optimization problems, which also possess nonlinear inequality constraints and free variables. We discuss an implementation of the algorithm for large-scale sparse convex optimization. Moreover, we present computational results for solving quadratically constrained quadratic programming and geometric programming problems, where some of the problems contain more than 100,000 constraints and variables. The results indicate that the proposed algorithm is also practically efficient.  相似文献   

16.
The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic–possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy.  相似文献   

17.
A new deterministic algorithm for solving convex mixed-integer nonlinear programming (MINLP) problems is presented in this paper: The extended supporting hyperplane (ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relaxation of the original MINLP problem. After an initial overestimated set has been obtained the algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic programming subproblems and refines the overestimated set by generating more supporting hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH generates a tighter overestimated set and unlike outer approximation the generation point for the supporting hyperplanes is found by a simple line search procedure. In this paper it is proven that the ESH algorithm converges to a global optimum for convex MINLP problems. The ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT) solver, and an extensive numerical comparison of its performance against other state-of-the-art MINLP solvers is presented.  相似文献   

18.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

19.
We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.  相似文献   

20.
A parallel algorithm for constrained concave quadratic global minimization   总被引:2,自引:0,他引:2  
The global minimization of large-scale concave quadratic problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. A linear underestimating function to the concave part of the objective is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and linear underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results are presented for problems with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained on a four processor CRAY2 using both sequential and parallel implementations of the algorithm. The average parallel solution time was approximately 15 seconds for problems with 400 linear variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computation time appears to increase only linearly with the number of linear variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号