首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic–possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy.  相似文献   

2.
Goal Programming with fractional objectives can be reduced to mathematical programming with a linear objective under linear and quadratic constraints, thus optimal solutions can be obtained by using existing Global Optimization techniques. However, only heuristic procedures are suggested in the literature on the field. In this note we explore the practical applicability of a recent algorithm for nonconvex quadratic programming with quadratic constraints for this problem. Encouraging computational experiences for randomly generated instances with up to 14 fractional objectives are presented.  相似文献   

3.
In this paper, a new algorithm to solve a general 0–1 programming problem with linear objective function is developed. Computational experiences are carried out on problems where the constraints are inequalities on polynomials. The solution of the original problem is equivalent with the solution of a sequence of set packing problems with special constraint sets. The solution of these set packing problems is equivalent with the ordering of the binary vectors according to their objective function value. An algorithm is developed to generate this order in a dynamic way. The main tool of the algorithm is a tree which represents the desired order of the generated binary vectors. The method can be applied to the multi-knapsack type nonlinear 0–1 programming problem. Large problems of this type up to 500 variables have been solved.  相似文献   

4.
Suppose that in a mathematical programming problem with a smooth objective function the constraints set is formed by linear inequalities. Then, as is well known, it is possible to determine redundant constraints before the optimization procedure starts. If some of the vertices of the convex polyhedron defined by the linear constraints are degenerate, the known redundancy-determining procedures may fail. Based on the recently developed theory of degeneracy graphs (DG's for short) a procedure is suggested how to proceed in degenerate cases. Weakly redundant constraints which cause degeneracy do have some impact on sensitivity analyses with respect oo the RHS or objective function coefficients. Using again the theory of DG's this impact is analysed. Also procedures are suggested how to perform sensitivity analyses when the degeneracy of the optimal vertex is not caused only by weakly redundant constraints. Small numerical examples are used for illustration.  相似文献   

5.
A compact algorithm is presented for solving the convex piecewise-linear-programming problem, formulated by means of a separable convex piecewise-linear objective function (to be minimized) and a set of linear constraints. This algorithm consists of a finite sequence of cycles, derived from the simplex method, characteritic of linear programming, and the line search, characteristic of nonlinear programming. Both the required storage and amount of calculation are reduced with respect to the usual approach, based on a linear-programming formulation with an expanded tableau. The tableau dimensions arem×(n+1), wherem is the number of constraints andn the number of the (original) structural variables, and they do not increase with the number of breakpoints of the piecewise-linear terms constituting the objective function.  相似文献   

6.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

7.
1引言随机规划中的概率约束问题在工程和管理中有广泛的应用.因为问题中包含非线性的概率约束,它们的求解非常困难.如果目标函数是线性的,问题的求解就比较容易.给出了一个求解随机线性规划概率约束问题的综述.原-对偶算法和切平面算法是比较有效的.在本文中,我们讨论随机凸规划概率约束问题:  相似文献   

8.
We will propose an outer-approximation (cutting plane) method for minimizing a function f X subject to semi-definite constraints on the variables XR n. A number of efficient algorithms have been proposed when the objective function is linear. However, there are very few practical algorithms when the objective function is nonlinear. An algorithm to be proposed here is a kind of outer-approximation(cutting plane) method, which has been successfully applied to several low rank global optimization problems including generalized convex multiplicative programming problems and generalized linear fractional programming problems, etc. We will show that this algorithm works well when f is convex and n is relatively small. Also, we will provide the proof of its convergence under various technical assumptions.  相似文献   

9.
史秀波  李泽民 《经济数学》2007,24(2):208-212
本文研究线性和非线性等式约束非线性规划问题的降维算法.首先,利用一般等式约束问题的降维方法,将线性等式约束非线性规划问题转换成一个非线性方程组,解非线性方程组即得其解;然后,对线性和非线性等式约束非线性规划问题用Lagrange乘子法,将非线性约束部分和目标函数构成增广的Lagrange函数,并保留线性等式约束,这样便得到一个线性等式约束非线性规划序列,从而,又将问题转化为求解只含线性等式约束的非线性规划问题.  相似文献   

10.
One of the most effective numerical techniques for solving nonlinear programming problems is the sequential quadratic programming approach. Many large nonlinear programming problems arise naturally in data fitting and when discretization techniques are applied to systems described by ordinary or partial differential equations. Problems of this type are characterized by matrices which are large and sparse. This paper describes a nonlinear programming algorithm which exploits the matrix sparsity produced by these applications. Numerical experience is reported for a collection of trajectory optimization problems with nonlinear equality and inequality constraints.The authors wish to acknowledge the insightful contributions of Dr. William Huffman.  相似文献   

11.
In this paper, we consider the class of linearly constrained nonconvex quadratic programming problems, and present a new approach based on a novel Reformulation-Linearization/Convexification Technique. In this approach, a tight linear (or convex) programming relaxation, or outer-approximation to the convex envelope of the objective function over the constrained region, is constructed for the problem by generating new constraints through the process of employing suitable products of constraints and using variable redefinitions. Various such relaxations are considered and analyzed, including ones that retain some useful nonlinear relationships. Efficient solution techniques are then explored for solving these relaxations in order to derive lower and upper bounds on the problem, and appropriate branching/partitioning strategies are used in concert with these bounding techniques to derive a convergent algorithm. Computational results are presented on a set of test problems from the literature to demonstrate the efficiency of the approach. (One of these test problems had not previously been solved to optimality). It is shown that for many problems, the initial relaxation itself produces an optimal solution.  相似文献   

12.
曾庆光 《应用数学》1992,5(4):43-49
本文对具有线性约束的非线性规划问题给出一个Goldfarb方法的改进算法,并且在与[1]同样的条件下,给出了算法之超线性收敛性证明.  相似文献   

13.
A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.  相似文献   

14.
考虑一类非线性不等式约束的非光滑minimax分式规划问题;目标函数中的分子是可微函数与凸函数之和形式而分母是可微函数与凸函数之差形式,且约束函数是可微的.在Arrow- Hurwicz-Uzawa约束品性下,给出了这类规划的最优解的Kuhn-Tucker型必要条件.所得结果改进和推广了已有文献中的相应结果.  相似文献   

15.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

16.
While significant progress has been made, analytic research on principal-agent problems that seek closed-form solutions faces limitations due to tractability issues that arise because of the mathematical complexity of the problem. The principal must maximize expected utility subject to the agent’s participation and incentive compatibility constraints. Linearity of performance measures is often assumed and the Linear, Exponential, Normal (LEN) model is often used to deal with this complexity. These assumptions may be too restrictive for researchers to explore the variety of relationships between compensation contracts offered by the principal and the effort of the agent. In this paper we show how to numerically solve principal-agent problems with nonlinear contracts. In our procedure, we deal directly with the agent’s incentive compatibility constraint. We illustrate our solution procedure with numerical examples and use optimization methods to make the problem tractable without using the simplifying assumptions of a LEN model. We also show that using linear contracts to approximate nonlinear contracts leads to solutions that are far from the optimal solutions obtained using nonlinear contracts. A principal-agent problem is a special instance of a bilevel nonlinear programming problem. We show how to solve principal-agent problems by solving bilevel programming problems using the ellipsoid algorithm. The approach we present can give researchers new insights into the relationships between nonlinear compensation schemes and employee effort.  相似文献   

17.
In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. Optimization methods are characterized by (1) the mathematical model used to describe a natural resource system, (2) a set of feasible strategies available to the resource manager, and (3) an objective functional by which to measure benefits and costs of strategies. A formal statement of the control problem is used to describe six approaches to optimal utilization of renewable natural resources: variational mathematics, specifically Pontryagin's Maximum Principle; dynamic programming; linear programming; nonlinear programming; simulation-optimization; and classical procedures. Solution methodologies are illustrated for each of these approaches, and examples from the ecological and natural resource literature are described for various subject matter areas. Applications are highlighted in terms of model structures, objective functionals, and system constraints. To the extent possible, optimal management patterns are characterized. Finally, the applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.  相似文献   

18.
To solve a system of nonlinear equations, Wu wen-tsun introduced a new formative elimination method. Based on Wu's method and the theory of nonlinear programming, we here propose a global optimization algorithm for nonlinear programming with rational objective function and rational constraints. The algorithm is already programmed and the test results are satisfactory with respect to precision and reliability.  相似文献   

19.
This paper summarizes previous results obtained by the authors on methods of solving extreme point mathematical programming problems with linear constraints. It is also shown how these results can be extended to yield an algorithm for solving extreme point mathematical programming problems with nonlinear constraints. Numerical examples to illustrate the algorithms are included.  相似文献   

20.
The linear piecewise lexicographic programming (LPWLGP) problem is a mathematical programming model with linear constraints and piecewise linear objective functions, arranged in a lexicographic hierarchy. Lexicographic spaces are introduced, and the differential properties of functions taking values in them are discussed. Necessary and sufficient optimality conditions for the LPWLGP problem are derived, and an algorithm based on them is formulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号