首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles between saddle-type invariant sets. These saddles may be chaotic giving rise to "cycling chaos." The robustness of such attractors appears by virtue of the fact that the connections are robust within some invariant subspace. We consider two previously studied examples and examine these in detail for a number of effects: (i) presence of internal symmetries within the chaotic saddles, (ii) phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and (iii) multistability of periodic orbits near bifurcation to cycling attractors. The first model consists of three cyclically coupled Lorenz equations and was investigated first by Dellnitz et al. [Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 1243-1247 (1995)]. We show that one can find a "false phase-resetting" effect here due to the presence of a skew product structure for the dynamics in an invariant subspace; we verify this by considering a more general bi-directional coupling. The presence of internal symmetries of the chaotic saddles means that the set of connections can never be clean in this system, that is, there will always be transversely repelling orbits within the saddles that are transversely attracting on average. Nonetheless we argue that "anomalous connections" are rare. The second model we consider is an approximate return mapping near the stable manifold of a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured. We examine the set of nearby periodic orbits in both parameter and phase space and show that their structure appears to be much more complicated than previously suspected. In particular, the basins of attraction of the periodic orbits appear to be pseudo-riddled in the terminology of Lai [Physica D 150, 1-13 (2001)].  相似文献   

2.
In this paper, we construct a novel, 4D smooth autonomous system. Compared to the existing chaotic systems, the most attractive point is that this system does not display any equilibria, but can still exhibit four-wing chaotic attractors. The proposed system is investigated through numerical simulations and analyses including time phase portraits, Lyapunov exponents, bifurcation diagram, and Poincaré maps. There is little difference between this chaotic system without equilibria and other chaotic systems with equilibria shown by phase portraits and Lyapunov exponents. But the bifurcation diagram shows that the chaotic systems without equilibria do not have characteristics such as pitchfork bifurcation, Hopf bifurcation etc. which are common to the normal chaotic systems. The Poincaré maps show that this system is a four-wing chaotic system with more complicated dynamics. Moreover, the physical existence of the four-wing chaotic attractor without equilibria is verified by an electronic circuit.  相似文献   

3.
For dynamical systems possessing invariant subspaces one can have a robust homoclinic cycle to a chaotic set. If such a cycle is stable, it manifests itself as long periods of quiescent chaotic behaviour interrupted by sudden transient 'bursts'. The time between the transients increases as the trajectory approaches the cycle. This behavior for a cycle connecting symmetrically related chaotic sets has been called 'cycling chaos' by Dellnitz et al. [IEEE Trans. Circ. Sys. I 42, 821-823 (1995)]. We characterise such cycles and their stability by means of normal Lyapunov exponents. We find persistence of states that are not Lyapunov stable but still attracting, and also states that are approximately periodic. For systems possessing a skew-product structure (such as naturally arises in chaotically forced systems) we show that the asymptotic stability and the attractivity of the cycle depends in a crucial way on what we call the footprint of the cycle. This is the spectrum of Lyapunov exponents of the chaotic invariant set in the expanding and contracting directions of the cycle. Numerical simulations and calculations for an example system of a homoclinic cycle parametrically forced by a Rossler attractor are presented; here we observe the creation of nearby chaotic attractors at resonance of transverse Lyapunov exponents. (c) 1997 American Institute of Physics.  相似文献   

4.
Spatiotemporal chaos and noise   总被引:1,自引:0,他引:1  
Low-dimensional chaotic dynamical systems can exhibit many characteristic properties of stochastic systems, such as broad Fourier spectra. They are distinguishable from stochastic processes through finite values for their dimension, Lyapunov exponents, and Kolmogorov-Sinai entropy. We discuss how these characteristic observables are modified in spatiotemporal chaotic systems like. coupled map lattices. We analyze with the help of Lyapunov concepts how the stochastic limit is approached and how these properties can be observed directly through local dimension measurements from reconstructed time series. Finally, we discuss the interaction of spatiotemporal attractors with external noise and possible connections to problems of pattern selection and stability.  相似文献   

5.
《Physics letters. A》1998,244(4):261-270
We consider examples of loss of stability of chaotic attractors in invariant subspaces (blowouts) that occur on varying two parameters, i.e. codimension-two blowout bifurcations. Such bifurcations act as organising centres for nearby codimension-one behaviour, analogous to the case for codimension-two bifurcations of equilibria. We consider examples of blowout bifurcations showing change of criticality, blowouts that occur into two different invariant subspaces and interact, blowouts that occur with onset of hyperchaos, interaction of blowout and symmetry increasing bifurcations and collision of blowout bifurcations. As in the case of bifurcation of equilibria, there are many cases in which one can infer the presence and form of secondary bifurcations and associated branches of attractors. There is presently no generic theory of such higher codimension blowouts (there is not even such a theory for codimension-one blowouts). We want to present a number of examples that would need to be covered by such a theory.  相似文献   

6.
Based on Sprott D system, a simple three-dimensional autonomous system with no equilibria is reported. The remarkable particularity of the system is that there exists a constant controller, which can adjust the type of chaotic attractors. It is demonstrated to be chaotic in the sense of having a positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcation diagram, Poincaré mapping and period-doubling route to chaos are analyzed with careful numerical simulations.  相似文献   

7.
Liu混沌系统的混沌分析及电路实验的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王发强  刘崇新 《物理学报》2006,55(10):5061-5069
研究了一种新型混沌系统——Liu混沌系统的基本动力学行为以及电路实现的问题,给出了相图、庞卡莱映射、功率谱以及李雅普诺夫指数,基于李雅普诺夫指数谱和分叉图分析了系统参数对Liu混沌系统的影响.最后设计硬件电路证实了Liu混沌系统以及Liu混沌系统随系统参数变化时的各种状态的存在.给出数值仿真和电路实验的结果. 关键词: Liu混沌系统 分岔 电路实验  相似文献   

8.
Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle–Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.  相似文献   

9.
We study the chaotic attractors of a delay differential equation. The dimension of several attractors computed directly from the definition agrees to experimental resolution with the dimension computed from the spectrum of Lyapunov exponents according to a conjecture of Kaplan and Yorke. Assuming this conjecture to be valid, as the delay parameter is varied, from computations of the spectrum of Lyapunov exponents, we observe a roughly linear increase from two to twenty in the dimension, while the metric entropy remains roughly constant. These results are compared to a linear analysis, and the asymptotic behavior of the Lyapunov exponents is derived.  相似文献   

10.
A new chaotic attractor is presented with only five terms in three simple differential equations having fewer terms and simpler than those of existing seven-term or six-term chaotic attractors. Basic dynamical properties of the new attractor are demonstrated in terms of equilibria, Jacobian matrices, non-generalized Lorenz systems, Lyapunov exponents, a dissipative system, a chaotic waveform in time domain, a continuous frequency spectrum, Poincaré maps, bifurcations and forming mechanisms of its compound structures.  相似文献   

11.
Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.  相似文献   

12.
We study the probability densities of finite-time or local Lyapunov exponents in low-dimensional chaotic systems. While the multifractal formalism describes how these densities behave in the asymptotic or long-time limit, there are significant finite-size corrections, which are coordinate dependent. Depending on the nature of the dynamical state, the distribution of local Lyapunov exponents has a characteristic shape. For intermittent dynamics, and at crises, dynamical correlations lead to distributions with stretched exponential tails, while for fully developed chaos the probability density has a cusp. Exact results are presented for the logistic map, x-->4x(1-x). At intermittency the density is markedly asymmetric, while for "typical" chaos, it is known that the central limit theorem obtains and a Gaussian density results. Local analysis provides information on the variation of predictability on dynamical attractors. These densities, which are used to characterize the nonuniform spatial organization on chaotic attractors, are robust to noise and can, therefore, be measured from experimental data.  相似文献   

13.
This paper presents a new three-dimensional autonomous chaotic system with only one positive term. Basic dynamical properties of the new attractor are demonstrated in terms of phase portraits, equilibria, Lyapunov exponents, Poincare mapping, bifurcation diagram. Furthermore, we derive a three-dimensional spheriform ultimate bound and positively invariant set for all the positive values of its parameters a, b, c. At last, the horseshoe chaos in this system is investigated based on the topological theory.  相似文献   

14.
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil’nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.  相似文献   

15.
余飞  王春华  尹晋文  徐浩 《中国物理 B》2011,20(11):110505-110505
In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincaré map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations are in good agreement with the numerical simulation results.  相似文献   

16.
To improve the complexity of chaotic signals,in this paper we first put forward a new three-dimensional quadratic fractional-order multi-scroll hidden chaotic system,then we use the Adomian decomposition algorithm to solve the proposed fractional-order chaotic system and obtain the chaotic phase diagrams of different orders,as well as the Lyaponov exponent spectrum,bifurcation diagram,and SE complexity of the 0.99-order system.In the process of analyzing the system,we find that the system possesses the dynamic behaviors of hidden attractors and hidden bifurcations.Next,we also propose a method of using the Lyapunov exponents to describe the basins of attraction of the chaotic system in the matlab environment for the first time,and obtain the basins of attraction under different order conditions.Finally,we construct an analog circuit system of the fractional-order chaotic system by using an equivalent circuit module of the fractional-order integral operators,thus realizing the 0.9-order multi-scroll hidden chaotic attractors.  相似文献   

17.
We study the influence of external noise on the relaxation to an invariant probability measure for two types of nonhyperbolic chaotic attractors, a spiral (or coherent) and a noncoherent one. We find that for the coherent attractor the rate of mixing changes under the influence of noise, although the largest Lyapunov exponent remains almost unchanged. A mechanism of the noise influence on mixing is presented which is associated with the dynamics of the instantaneous phase of chaotic trajectories. This also explains why the noncoherent regime is robust against the presence of external noise.  相似文献   

18.
Sara Dadras 《Physics letters. A》2009,373(40):3637-3642
In this Letter a novel three-dimensional autonomous chaotic system is proposed. Of particular interest is that this novel system can generate two, three and four-scroll chaotic attractors with variation of a single parameter. By applying either analytical or numerical methods, basic properties of the system, such as dynamical behaviors (time history and phase diagrams), Poincaré mapping, bifurcation diagram and Lyapunov exponents are investigated to observe chaotic motions. The obtained results clearly show that this is a new chaotic system which deserves further detailed investigation.  相似文献   

19.
This Letter presents a new three-dimensional autonomous system with four quadratic terms. The system with five equilibrium points has complex chaotic dynamics behaviors. It can generate many different single chaotic attractors and double coexisting chaotic attractors over a large range of parameters. We observe that these chaotic attractors were rarely reported in previous work. The complex dynamical behaviors of the system are further investigated by means of phase portraits, Lyapunov exponents spectrum, Lyapunov dimension, dissipativeness of system, bifurcation diagram and Poincaré map. The physical circuit experimental results of the chaotic attractors show agreement with numerical simulations. More importantly, the analysis of frequency spectrum shows that the novel system has a broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.  相似文献   

20.
We study the effect of noncoherence on the onset of phase synchronization of two coupled chaotic oscillators. Depending on the coherence properties of oscillations characterized by the phase diffusion, three types of transitions to phase synchronization are found. For phase-coherent attractors this transition occurs shortly after one of the zero Lyapunov exponents becomes negative. At rather strong phase diffusion, phase locking manifests a strong degree of generalized synchronization, and occurs only after one positive Lyapunov exponent becomes negative. For intermediate phase diffusion, phase synchronization sets in via an interior crises of the hyperchaotic set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号