首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

2.
Fe3O4 nanorods with average diameters of 40-50 nm and lengths of up to 1 μm were synthesized through hydrolysis of FeCl3 and FeSO4 solutions containing urea in the temperature range from 90 to 95 °C in reflux condition for 12 h, following an aging time of 12 h. The porous hematite nanorods were prepared by calcination of the precursor which was obtained from hydrolysis of FeCl3 and FeSO4 solutions containing urea at a temperature of 90 °C for 10 h in hydrothermal condition. The formation of the porosity of hematite was due to the decomposition of FeCO3 and FeOOH. Urea played a key role in the formation of the iron oxide nanorods. Transmission electron microscopy (TEM) images showed that the morphology of magnetite particles is homogeneous in the shape of rods and hematite rods are full of porosity. The values of saturation magnetization (M) and coercivity (H) of magnetite nanorods are 67.55 emu/g and 114 Oe, respectively. The samples were also characterized by X-ray powder diffraction (XRD) and electron diffraction (ED). At last, the forming mechanism of both the magnetite and porous hematite nanorods was discussed.  相似文献   

3.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

4.
This study presents an experimental and theoretical study on the growth of monodispersed akaganéite (β-FeOOH) nanorods with tunable aspect ratios (longitudinal to transversal) under mild conditions (80 °C, aqueous solution). The synthesis of β-FeOOH nanorods is highly influenced by the presence of salt ions, and thus, the effect of various anions (e.g., NO3 , SO4 2−, F, Cl, and Br) were investigated on the microstructure, morphology, and size of the nanoparticles. It was found that these anions could interact strongly or weakly with the FeO6 octahedral unit in the ferric oxyhydroxides, hence greatly affect the morphology, crystallization, and structure of the iron oxide/oxyhydroxide nanoparticles under the reported conditions. Moreover, these nanorods could be converted into magnetite (Fe3O4) through the reduction of hydrazine, which provides a new template approach to prepare magnetite nanorods with shape and size control at ambient conditions. The microstructure, composition, and structural transformation of the as-synthesized nanoparticles were characterized by various techniques, such as transmission electron microscopy (TEM and HRTEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The possible formation and growth mechanism of akaganéite nanorods were discussed. Finally, the influence of anions on the β-FeOOH(100), (110), and (001) surfaces was further understood by theoretical simulations (e.g., molecular dynamics method).  相似文献   

5.
ZnWO4 nanorods with a bundle-like structure were synthesized at 180°C for 12 h by a hydrothermal technology from Na2WO4⋅2H2O and ZnSO4⋅7H2O in the presence of sodium dodecyl sulfate (SDS). The as-synthesized bundle-like structure of ZnWO4 nanorods was characterized by various techniques: TEM, XRD and EDS. The luminescence properties of the bundle-like structure of the ZnWO4 nanorods were investigated by photoluminescence (PL) spectroscopy.  相似文献   

6.
Highly stable and spherical silver nanoparticles, stabilized by methoxycarbonyl-terminated hyperbranched poly(amine-ester) (HPAE-COOCH3), were synthesized in water with reducing AgNO3/HPAE-COOCH3 using two methods, viz. NaBH4 and ultraviolet irradiation. HPAE-COOCH3 was found to play a key role in the formation of nanoparticles. UV–visible absorption, Transmission electron microscopic (TEM), and Fourier transform infrared spectroscopy (FT-IR) had been used to study the structure and characterization of the silver nanoparticles. The absorption peaks of the silver nanoparticles appear at ~420 nm in UV–visible absorption spectra; average particle size reduced by NaBH4 is ~30 nm, which is ~10 and ~15 nm, respectively, when ultraviolet irradiation time is 12 and 24 h. FT-IR spectra confirm that there is strong interaction between silver nanoparticles and HPAE-COOCH3. And silver nanoparticles/HPAE-COOCH3 aqueous solution can keep stable for more than 3 months.  相似文献   

7.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

8.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

9.
Lithium manganese oxide nanorods were prepared from manganese dioxide nanorods precursor. The structure and morphology were confirmed by X-ray diffraction (XRD) and transmission electron microscope (TEM). The data of the Rietveld refinement indicate that the nanorods preferentially grow along the [111] direction. After charge–discharge test at 1.0 mA cm−2 in 3.0–4.4 V, the nanorods LiMn2O4 showed the 134.5 mAh g−1 initial discharge capacity and only lost 1.1% of initial capacity after 30 cycles, which is better than that of bulk particles LiMn2O4 prepared by traditional solid-state reaction method. This effective and simple route to synthesis nanorods LiMn2O4 from one-dimensional (1D) precursor could also be extended to prepare 1D other nanomaterials with special electrochemical properties.  相似文献   

10.
By simply changing the reactants’ compositions, wurtzite CdSe nanorods and zinc blend CdSe nanoparticles were selectively synthesized through a convenient solvothermal route with the reaction of cadmium nitrate (Cd(NO3)2· 4H2O), hydrazine hydrate (N2H4· H2O), and Se in ethylenediamine (en) at 140°C. Effects of temperature and composition of the reactants were detected and the amount and gaining rate of Se2− ions were found to determine the morphology and structure of the final product. Dong Wu and Guo-Qiao Lai contributed equally to this paper  相似文献   

11.
Xia Li  Jun Ma 《Journal of luminescence》2011,131(7):1355-1360
Uniform single crystal LaPO4 phosphors were selectively synthesized using a facile hydrothermal method without the aid of templates or catalysts. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra were used to characterize the nanocrystal materials. The morphological evolution from nanorods to nanoparticles was brought about by altering the pH. In addition, the crystal structure was changed from hexagonal phase to monoclinic one by increasing the hydrothermal temperature. We propose a possible growth mechanism for LaPO4 nanorods based on the results of our analyses. Furthermore, we compared the photoluminescence properties of LaPO4:Eu with different morphologies. The results showed that the fluorescence intensity of monoclinic LaPO4:Eu nanorods is stronger than that of nanoparticles.  相似文献   

12.
ZnO nanostructures including nanorods, dense, and partially hollow spheres were synthesized via a solution synthesis method with temperature ranging from 65 to 95 °C. Scanning electron microscopy (SEM) revealed that the diameter of the spheres is in the range of 200–500 nm. Transmission electron microscopy (TEM) showed that some of the spheres are hollow or partially hollow. Powder X-ray Diffraction (XRD) and TEM-Selected area electron diffraction (SAED) analysis showed that the spheres consist of polycrystalline nanoparticles. It was found for the first time that the agitation during the synthesis plays a critical role on morphology of the ZnO nanostructures formed in solution. The oriented attachment of nanocrystals without agitation during the synthesis could guide the nanocrystals to form an ordered nanorod structure. However, the disordered aggregation of the nanocrystals under shear force resulted in a spherical morphology. It was also found that the composition of spheres is different from that of nanorods: the spheres consist of both ZnO and Zn(OH)2, but nanorods consist of single-crystal ZnO only. Zn(OH)2 presented in the spheres could decompose to ZnO by calcination, resulting in the formation of hollow spheres.  相似文献   

13.
The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: ~100 nm; width: ~10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2–10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.  相似文献   

14.
With the use of supercritical carbon dioxide (SC-CO2), the matrix immobilization of photoluminescent silicon nanocrystals (nc-Si) in polytetrafluoroethylene microparticles (mp-PTFE) is performed, which leads to the formation of mp-PTFE/nc-Si photoluminescent nanocomposite containing ∼103–104 nc-Si particles per mp-PTFE particle (1–2 μm in size). This approach is based on the effect of polymer swelling in SC-CO2, efficient SC-CO2-assisted transport of nanoparticles into the internal free volume of the polymer, and contraction of the nanocomposite after the release of CO2, an effect that prevents the subsequent agglutination of nanoparticles. Particles of nc-Si photoluminescent in the visible spectrum were synthesized from silicon suboxide powder (SiO x , x ≈ 1) heated at various temperatures within 25–950°C and then etched in concentrated hydrofluoric acid. The hydrosilylation procedure was used to graft 1-octadecene molecules to the surface of nc-Si particles. As a result, the photoluminescence intensity of nc-Si increased substantially. According to TEM images and small angle X-ray scattering data, the maximum size of nc-Si particles did not exceed 5 nm and 7 nm, respectively, and the core of these nanoparticles consisted of crystalline silicon. The structure and spectral properties of the initial nc-Si particles and synthesized mp-PTFE/nc-Si photoluminescent nanocomposite microparticles were studied.  相似文献   

15.
Nanocrystalline SnO2 was synthesized in supercritical water at 385–415°C and 30 MPa (38–106 s residence time) in a tubular flow reactor from an aqueous solution of 0.1–0.4 M SnCl4. The conversion rate was between 53 and 81%, but increased to 97.8% when 0.1 M NaOH was added. Nanoparticles were analyzed by a series of independent analytical techniques, including TEM, Raman, XRD, SEM, EDX and FT-IR. The initial size of the particles was about 3.7 nm. After calcination at 450°C for 2 h, the particle size increased to 4 nm. The particles were of low crystallinity, as indicated by the weak Raman and XRD signals. All particles were composed of Sn and O, as verified by the EDX spectra. The crystals were tetragonal, as confirmed by the weak XRD spectrum. After calcination at 600°C for 10 h, the particle size increased to 9 nm, while high crystallinity was confirmed by Raman and XRD analyses. All the crystals had the same structure, as indicated by TEM electron diffraction patterns. Using this one-step supercritical water process, nanoparticles of SnO2 can be conveniently produced continuously in a flow reactor in less than 2 min.  相似文献   

16.
With the use of a modified plasma arc gas condensation technique and control of the processing parameters, namely, plasma current and chamber pressure, we synthesized tungsten oxide nanomaterials with aspect ratios ranging from 1.1 (for equiaxed particles with the length and width of 48 nm and 44 nm, respectively) to 12.7 (for rods with the length and width of 266 nm and 21 nm, respectively). The plasma current and chamber pressure, respectively, ranged from 70 to 90 A and from 200 to 600 Torr. We then characterized the tungsten oxide nanomaterials by means of X-ray diffraction, high-resolution transmission electron microscope, UV–visible spectroscope, and photoluminescence (PL) spectroscope. Experimental results show that equiaxed tungsten oxide nanoparticles were produced at a relatively low plasma current of 70 A, whereas nanorods were produced when plasma currents or chamber pressures were increased. All of the as-prepared tungsten oxide nanomaterials exhibited a WO2.8 phase. Compared to the nanoparticles, the nanorods exhibited unique properties, such as a redshift in the UV–visible spectrum, a blue emission in PL spectrum, and a good performance in field emission. With respect to the field emission, the turn-on voltage for WO2.8 nanorods was found to be as low as 1.7 V/μm.  相似文献   

17.
The Fe3O4/polythiophene nanoparticles, possessing core–shell structure, were prepared by two-step method. In the first step, the Fe3O4 particles were synthesized via co-precipitation of FeCl3 and FeSO4, using the NH3·H2O and N2H4·H2O as precipitant system. In the second step, the thiophene adsorbed and polymerized on the surface of the Fe3O4 in the solvent of chloroform. Raman, FTIR, EDS, XRD, TEM, Zeta potential measurement and TG-SDTA were employed to characterize the composition and structure of the products. The results showed that the Fe3O4/polythiophene nanoparticles were successfully synthesized with good dispersion and stable core–shell structure, provided with average particle size of approximately 20 nm, in which the diameter of Fe3O4 core was approximately 14 nm and the thickness of polythiophene shell was approximately 3–4 nm. Then, the nanoparticles were added into alkyd varnish to prepare a composite coating. The neutral salt spray test, paraffin control test and mechanical test were carried out to identify the properties of the composite coating. It was found that the composite coating had good performances of anticorrosion and paraffin controlling when the mass fraction of the nanoparticles was 0.8–1 wt% in alkyd varnish. As a multifunctional material, the Fe3O4/polythiophene nanoparticles can be used in the internal coating of pipeline and have great potential application in crude oil pipeline transportation.  相似文献   

18.
Antiferromagnetic Co3O4 nanoparticles with diameter around 30 nm have been synthesized by a solution-based method. The phase identification by the wide-angle X-ray powder diffraction indicates that the Co3O4 nanoparticle has a cubic spinel structure with a lattice constant of 0.80843(2) nm. The image of field emission scanning electron microscope shows that the nanoparticles are assembled together to form nanorods. The magnetic properties of Co3O4 fine particles have been measured by a superconducting quantum interference device magnetometer. A deviation of the Néel temperature from the bulk is observed, which can be well described by the theory of finite-size scaling. An enhanced coercivity as well as a loop shift are observed in the field-cooled hysteresis loop. The exchange bias field decreases with increasing temperature and diminishes at the Néel temperature. The training effect and the opening of the loop reveal the existence of the spin-glass-like surface spins.  相似文献   

19.
Pulsed laser ablation in a liquid phase was successfully employed to synthesize a barium molybdate (BaMoO4) nanocolloidal suspension. The nanocolloidal suspension was composed of well-dispersed and horizontally assembled BaMoO4 aggregates. The BaMoO4 aggregates showed predominantly elliptically shaped nanorods with sizes between 100 and 200 nm. The preferential elliptical growth was rationalized from the viewpoint of the intrinsic structure of BaMoO4. The optical properties of the prepared BaMoO4 colloidal nanoparticles were investigated using Raman spectroscopy, UV–vis spectroscopy and photoluminescence (PL) spectrophotometry. The optical band gap was estimated by Tauc and Menth’s law. The PL emission feature was decomposed into several individual Gaussian components, which could be interpreted by a Jahn–Teller splitting effect on the [MoO4]2- tetrahedron of the BaMoO4 colloidal nanoparticles. PACS  42.62.-b; 82.70.Dd; 78.55.Hx; 81.07.Wx  相似文献   

20.
Nanostructured Ni-doped indium–tantalum–oxides (InTaO4) were synthesized by a reactive pulsed laser ablation process, aiming at the final goal of direct splitting of water under visible sunbeam irradiation. The third harmonics beam of a Nd:YAG laser was focused onto a sintered In0.9Ni0.1TaO4−δ target in pure oxygen background gases (0.05–1.00 Torr). Increasing the oxygen gas pressure, via thin films having nanometer-sized strong morphologies, single-crystalline nanoparticles were synthesized in the reactive vapor phases. The nanostructured deposited materials have the monoclinic layered wolframite-type structure of bulk InTaO4, without oxygen deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号