首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration.  相似文献   

2.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

3.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

4.
A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na2CO3). Textured with Na2CO3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn–O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.  相似文献   

5.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni.  相似文献   

6.
Zinc oxide (ZnO) thin films were deposited on the gallium nitride (GaN) and sapphire (Al2O3) substrates by pulsed laser deposition (PLD) without using any metal catalyst. The experiment was carried out at three different laser wavelengths of Nd:YAG laser (λ = 1064 nm, λ = 532 nm) and KrF excimer laser (λ = 248 nm). The ZnO films grown at λ = 532 nm revealed the presence of ZnO nanorods and microrods. The diameter of the rods varies from 250 nm to 2 μm and the length varies between 9 and 22 μm. The scanning electron microscopy (SEM) images of the rods revealed the absence of frozen balls at the tip of the ZnO rods. The growth of ZnO rods has been explained by vapor-solid (V-S) mechanism. The origin of growth of ZnO rods has been attributed to the ejection of micrometric and sub-micrometric sized particulates from the ZnO target. The ZnO films grown at λ = 1064 nm and λ = 248 nm do not show the rod like morphology. X-ray photoelectron spectroscopy (XPS) has not shown the presence of any impurity except zinc and oxygen.  相似文献   

7.
Nanoporous ZnO/SiO2 bilayer coatings were prepared on the surface of glass substrates via sol-gel dip-coating process. The structural, morphological and optical properties of the coatings were characterized. The refractive indices of ZnO layer and SiO2 layer are 1.34 and 1.21 at 550 nm, respectively. The transmittance and reflectance spectra of the coatings were investigated and the broadband antireflection performance of the bilayer structure was determined over the solar spectrum. The solar transmittances in the range of 300-1200 nm and 1200-2500 nm are increased by 6.5% and 6.2%, respectively. The improvement of transmittance is attributed to the destructive interference of light reflected from interfaces between the different refractive-index layers with an optimized thickness. Such antireflection coatings of ZnO/SiO2 provide a promising route for solar energy applications.  相似文献   

8.
Experimental study of Love-mode immunosensors based on structures of ZnO/36°YX-LiTaO3 is presented, in which the ZnO films with c-axis (0 0 2) orientation have been successfully grown on the 36°YX-LiTaO3 substrates by RF magnetron sputtering technique. Then the Love-mode immunosensors based on the ZnO/36°YX-LiTaO3 structures and monitoring antibody-antigen immunoreactions in aqueous solutions in real time are fabricated. The experimental results show that the optimal thickness of ZnO layers is about 1.20 μm in the structures deposited on 36°YX-LiTaO3 substrates, which is much less than that of SiO2 overlayers about 6 μm. The antibody-antigen immunoreaction experiments also show that the frequency shifts of the sensors with 1.33 μm ZnO films are proportional to the concentration of antigen in solution as the concentration range less than 100 μg/ml.  相似文献   

9.
The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (dual-junction) and 300-1850 nm (triple-junction), under the solar spectrum AM0. In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer, we use multi-dimensional matrix data for reliable simulation. A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.  相似文献   

10.
A nanocrystalline CdO/Si solar cell was fabricated via deposition of a CdO thin film on p-type silicon substrate with approximately 370 nm thickness using solid–vapor deposition for Cd powder at 1274 K with argon and oxygen flow. Scanning electron microscopy revealed that the product was a Cadmium oxide nanocrystalline. X-ray diffraction and energy dispersive X-ray analysis were used to characterize the structural properties of the solar cell. The nanocrystalline thin film had a grain size of 38 nm. The solar cell yielded a minimum effective reflectance that exhibited excellent light-trapping at wavelengths ranging from 400 to 1000 nm. Photoluminescence spectroscopy was conducted to investigate the optical properties. The direct band gap energy of the nanocrystalline CdO thin film was 2.46 eV. CdO/Si solar cell photovoltaic properties were examined under 100 mW/cm2 solar radiation. The cell showed an open circuit voltage (Voc) of 457 mV, a short-circuit current density (Jsc) of 18.5 mA/cm2, a fill factor (FF) of 0.652, and a conversion efficiency (η) of 5.51%.  相似文献   

11.
In this work a new method has been employed to synthesize nanocrystalline ZnO powder under hydrothermal conditions at 80 °C using aqueous Zn(NO3)2·6H2O solution and diethylamine (DEA) as the starting materials. The ZnO powder prepared by this novel method was characterized by XRD, energy dispersive X-ray spectroscopy (EDX), FTIR and UV–vis techniques. Calculation based on XRD data revealed ZnO particles to be of nanometer size (∼33 nm). The ZnO powder was subsequently used to make its thin film which exhibited flower like morphology when examined by SEM. Thin ZnO films were sensitized with N719 dye, (Bu4N)2[Ru(dcbpyH)2(NCS)2], and used as photo-anode to construct sandwich type dye-sensitized solar cell (DSSC). With such cells, VOC = 0.680 V, JSC = 0.61 mA cm−2, fill factor = 0.43 and overall conversion efficiency η = 0.23% were achieved on illumination with visible light (80 mW cm−2).  相似文献   

12.
Field emission property of printed CNTs-mixed ZnO nanoneedles   总被引:1,自引:0,他引:1  
ZnO nanoneedles were synthesized via thermal evaporation method without any catalyst. Scanning electron microscopy and transmission electron microscopy investigations showed that these products presented a nanoneedle structure. To enhance the field emission (FE) properties of screen printed ZnO nanoneedles, a given amount (0.05 g) carbon nanotubes (CNTs) mixed with (0.5 g) ZnO nanoneedles paste via screen printed method and heat-treatment at (600 °C, 500 °C and 450 °C) was presented. The CNTs-mixed ZnO nanoneedles heat-treated at 450 °C had the lowest turn-on field of 3.75 V/μm, highest field emission current of 0.16 mA at 7.5 V/μm and highest β of 830. An efficiency FE enhancement of 450 °C sample was attributed to melioration of conductance between ZnO nanoneedles and ITO surface by CNTs.  相似文献   

13.
Reduced surface reflectance and enhanced light trapping is required by any high efficiency solar cell. Anisotropic etching was done on silicon (1 0 0) by using tetramethyl ammonium hydroxide TMAH, (CH3)4NOH, solution at 85 °C. Process variables considered were solution concentration and time proposed by response surface methodology (RSM). An effective surface texture was resulted with reflectance less than 8% without antireflection coating. The antireflection mechanism was also co-related with the etch rate of Si. Optimized values predicted by RSM for time and TMAH concentration were 5 min and 3.50% respectively. The technique and optimization of parameters by using response surface methodology (RSM) could be valuable in the texturization process for high-efficiency Si solar cells.  相似文献   

14.
We present a numerical study on the optimization of plasmonic thin-film solar cells with full band optical absorption increased in all polarization using plasmonic backcontact gratings. Particle swarm optimization (PSO) and the finite-difference time domain (FDTD) are combined to achieve the maximum absorption enhancement. Through optimization, we obtained approximately a 288% average absorption enhancement, 304% and 273% absorption enhancement for TE- and TM-polarized illumination as compared to a bare cell. The corresponding optimal design parameters of plasmonic solar cell are P = 442 nm, h4 = 283 nm, h5 = 191 nm and w=238w=238 nm. The full band absorption enhancement arises from the waveguide-plasmon-polariton, Fabry–Pérot (FP) cavity mode and multiresonant guided modes. The average absorption enhancement under an unpolarized illumination is almost immune to the incident angle ranging from −40° to 40°. If the thickness of the light absorbing layer is increased, the absorption enhancement could be reduced significantly. And the average absorption enhancement is maximum (2.88) when the thickness of Si layer is 100 nm.  相似文献   

15.
Al and Sb codoped ZnO nanorod ordered array thin films have been deposited on glass substrate with a ZnO seed layer by hydrothermal method at different growth time. The effect of growth time on structure, Raman shift, and photoluminescence (PL) was studied. The thin films at growth time of 5 h consist of nanorods growth vertically oriented with ZnO seed layer, and the nanorods with an average diameter of 27.8 nm and a length of 1.02 μm consist of single crystalline wurtzite ZnO crystal and grow along [0 0 1] direction. Raman scattering analysis demonstrates that the thin films at the growth time of 5 h have great Raman shift of 15 cm−1 to lower wavenumber and have low asymmetrical factor Гa/Гb of 1.17. Room temperature photoluminescence reveals that there is more donor-related PL in films with growth time of 5 h.  相似文献   

16.
The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO2-50CaO-15P2O5-(10 − x)Fe2O3-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 °C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca3Si2O7) phase is also observed when glass is heat treated at 1000 °C. The microstructure of the glass-ceramics heat treated at 800 °C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 °C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.  相似文献   

17.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

18.
ZnO nanocrystalline films have been prepared on Si(1 0 0) substrate using direct current (D.C) magnetron sputtering technique at room temperature. The thickness of nanocrystalline films almost linearly increased with deposition duration and the sizes of crystalline grains almost kept unchanged. After deposition, thermal annealing was performed at 800 °C in atmosphere for 2 h in order to improve the qualities of ZnO thin films. Scanning electron microscope (SEM) images showed the surface roughness of the films less than 45 nm. X-ray diffraction (XRD) patterns revealed the slight evolution of the crystal structures. Raman scattering spectra confirmed the data obtained from X-ray diffraction measurements.With these ZnO nanocrystalline films, prototypic gas sensors were fabricated. Both sensitivity and response of the sensors to different gases (H2 and CH4) were investigated. A quick response of time, less than 1 second to CH4 gas sensor has been achieved.  相似文献   

19.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

20.
We directly investigated the chemical compositional origin of surface roughness variations in air-annealed ZnO single crystal samples for annealing temperatures up to 1000 °C. Atomic Force Microscopy (AFM) showed temperature-dependent changes in surface roughness and morphology, with a maximum in surface roughness of 2 nm found for samples annealed at 400 °C. The O(1s) line, measured by X-ray Photoelectron Spectroscopy (XPS) showed a maximum for Zn(OH)2 and a minimum for off-stoichiometric ZnO at 400 °C; while the Zn(2p) peaks show an increase in slope at that temperature. These results indicate that the roughness arises from Zn diffusion and loss of surface oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号