首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Using composition-spread technique, we have grown metastable Mg1−xCaxO solid solution films on ZnO layers by pulsed laser deposition. All the films exhibited (1 1 1) oriented cubic phase. Despite a large miscibility gap, no phase separation took place at growth temperatures up to 700 °C, whereas an optimal growth temperature was found at 400 °C in terms of the crystallinity. The composition-spread films were characterized by X-ray diffraction mapping technique. Both lattice parameters and diffraction intensity increased with increasing the CaO composition. The present isovalent heterointerfaces realized the perfect lattice-matching by properly adjusting the CaO composition, leading to particular interest for ZnO based field effect transistors.  相似文献   

2.
Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition   总被引:1,自引:0,他引:1  
p-Type ZnO thin films have been realized via monodoping antimony (Sb) acceptor by using pulsed laser deposition. The obtained films with the best electrical properties show a hole concentration in the order of 1018 cm−3 and resistivity in the range of 2-4 Ω cm. X-ray diffraction measurements revealed that all the films possessed a good crystallinity with (0 0 2)-preferred orientation. Guided by X-ray photoemission spectroscopy analysis and a model for large-sized-mismatched group-V dopant in ZnO, an SbZn-2VZn complex is believed to be the most possible acceptor in the Sb-doped p-type ZnO thin films.  相似文献   

3.
In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 °C while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S).  相似文献   

4.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

5.
Al-N codoped p-type ZnO thin films have been prepared by DC magnetron reactive sputtering reproducibly using a high-temperature (HT) homo-buffer layer. The influence of HT buffer layer deposition time (Tht) on film properties was investigated by X-ray diffraction (XRD), scanning electron micro-spectra (SEM) and Hall measurement. The Al-N codoped ZnO film was improved evidently in its crystal quality by varying the value of Tht. Results of Hall effect showed that all of the Al-N codoped ZnO thin films were p-type conduction and had resistivity mainly below 50 Ω cm. The optimum deposition time of HT buffer layer is around 3 min from the comprehensive consideration of structural, electrical, and optical properties. The obtained ZnO thin film can meet the need of application in optoelectronic devices based on ZnO.  相似文献   

6.
ZnO films with different morphologies were deposited on the ITO-coated glass substrate from zinc nitrate aqueous solution at 65 °C by a seed-layer assisted electrochemical deposition route. The seed layers were pre-deposited galvanostatically at different current densities (isl) ranging from −1.30 to −3.0 mA/cm2, and the subsequent ZnO films had been done using the potentiostatic technique at the cathode potential of −1.0 V. Densities of nucleation centers in the seed layers varied with increasing the current density, and the ZnO films on them showed variable morphologies and optical properties. The uniform and compact nanocrystalline ZnO film with (0 0 2) preferential orientation was obtained on seed layer that was deposited under the current density (isl) of −1.68 mA/cm2, which exhibited good optical performances.  相似文献   

7.
This paper presents the results of surface characterization of TiO2 thin films deposited on different substrates by the use of high-energy reactive magnetron sputtering. Structural investigations carried out by X-ray diffraction (XRD) and atomic force microscopy (AFM) have shown a strong influence of both the substrate type, and its placement in the deposition chamber (relative to the sputtering target), on the structural properties of the films. In all cases, there is evidence for pseudoepitaxial growth. XRD examination showed existence of TiO2-rutile phase with preferred (1 1 0) orientation and AFM measurements revealed nanocrystalline structure directly after deposition. X-ray photoelectron spectroscopy analysis showed that the TiO2 films have stoichiometric composition.  相似文献   

8.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

9.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

10.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

11.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

12.
We report on the effects of glass substrate temperature on the crystal structure and morphology of tungsten (W)-doped ZnO nanostructures synthesized by pulsed-laser deposition. X-ray diffraction analysis data shows that the W-doped ZnO thin films exhibit a strongly preferred orientation along a c-axis (0 0 0 L) plane, while scanning electron and atomic force microscopes reveal that well-aligned W-doped ZnO nanorods with unique shape were directly and successfully synthesized at substrate temperature of 550 °C and 600 °C without any underlying catalyst or template. Possible growth mechanism of these nanorods is suggested and discussed.  相似文献   

13.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

14.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

15.
N-doped p-type ZnO films were grown by plasma-free metal-organic chemical vapor deposition (MOCVD). The effect of substrate temperature on the electrical, optical, and structural properties of the N-doped ZnO films was investigated by Hall-effect, photoluminescence, X-ray diffraction measurements. The electrical properties of the films were extremely sensitive to the substrate temperature and the conduction type could be reversed in a narrow range from 380 °C to 420 °C. Based on X-ray photoelectron spectroscopy, a high compensation effect in the N-doped ZnO films grown by plasma-free MOCVD was suggested to explain the temperature-dependent phenomenon.  相似文献   

16.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

17.
In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2–4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 ?, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.  相似文献   

18.
In the present study, the structural, optical and antibacterial properties of ZnO thin films are reported. ZnO thin films are deposited on borosilicate glass substrates by radio frequency plasma enhanced chemical vapor deposition (PECVD) using oxygen as process gas. The crystallinity of the deposited films is improved upon annealing at 450 °C in air for 1.5 h and the polycrystalline nature of the films is further confirmed by selected area electron diffraction. The particle size of the annealed film (thickness 476 nm) is found to be ∼34 nm from the transmission electron microscopic observation. Energy dispersive X-ray spectrum indicates the stoichiometric deposition of ZnO films. The films are highly transparent (transmittance >85%) in the visible region of electromagnetic spectrum. The films exhibit excellent antibacterial effect towards the growth of Escherichia coli and Pseudomonas aeruginosa.  相似文献   

19.
ZnO:Ag films were grown on Si (1 0 0) substrates by ultrasonic spray pyrolysis at various substrate temperatures. The effect of deposition temperature on the structural and the room temperature photoluminescence (RT-PL) properties of ZnO:Ag films was studied. With the deposition temperature rising to 550 °C, the intensity of the near-band edge (NBE) emission at 378 nm decreased and a new emission peak at 399 nm was observed. On the basis of the X-ray diffraction pattern (XRD), the X-ray photoelectron (XPS) spectra of ZnO:Ag films, and the effects of annealing on the PL, we suggest that the 399 nm emission should be attributed to the electron transition from the conduction band to AgZn-related complexes defects radiative centers above the valence band.  相似文献   

20.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号